Search tips
Search criteria 


Logo of aapspharmspringer.comThis journalToc AlertsSubmit OnlineOpen Choice
AAPS PharmSciTech. 2007 March; 8(1): E1–E12.
Published online 2007 January 5. doi:  10.1208/pt0801001
PMCID: PMC2750424

Liposomes as an ocular delivery system for acetazolamide: In vitro and in vivo studies


The purpose of this study was to formulate topically effective controlled release ophthalmic acetazolamide liposomal formulations. Reverse-phase evaporation and lipid film hydration methods were used for the preparation of reversephase evaporation (REVs) and multilamellar (MLVs) acetazolamide liposomes consisting of egg phosphatidylcholine (PC) and cholesterol (CH) in the molar ratios of (7[ratio]2), (7[ratio]4), (7[ratio]6), and (7[ratio]7) with or without stearylamine (SA) or dicetyl phosphate (DP) as positive and negative charge inducers, respectively. The prepared liposomes were evaluated for their entrapment efficiency and in vitro release. Multilamellar liposomes entrapped greater amounts of drug than REVs liposomes. Drug loading was increased by increasing CH content as well as by inclusion of SA. Drug release rate showed an order of negatively charged > neutral > positively charged liposomes, which is the reverse of the data of drug loading efficiency. Physical stability study indicated that approximately 89%, 77%, and 69% of acetazolamide was retained in positive, negative, and neutral MLVs liposomal formulations up to a period of 3 months at 4°C. The intraocular pressure (IOP)-lowering activity of selected acetazolamide liposomal formulations was determined and compared with that of plain liposomes and acetazolamide solution. Multilamellar acetazolamide liposomes revealed more prolonged effect than REVs liposomes. The positively charged and neutral liposomes exhibited greater lowering in IOP and a more prolonged effect than the negatively charged ones. The positive multilamellar liposomes composed of PC:CH:SA (7:4:1) molar ratio showed the maximal response, which reached a value of −7.8±1.04 mmHg after 3 hours of topical administration.

Keywords: Acetazolamide, multilamellar liposomes, reverse-phase evaporation liposomes

Full Text

The Full Text of this article is available as a PDF (430K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
1. Kaur IP, Garg A, Singla AK, et al. Vesicular systems in ocular delivery: an overview. Int J Pharm. 2004;269:1–14. doi: 10.1016/j.ijpharm.2003.09.016. [PubMed] [Cross Ref]
2. Kaur IP, Smitha R, Aggarwal D, et al. Acetazolamide: future perspective in topical glaucoma therapeutics. Int J Pharm. 2002;248:1–14. doi: 10.1016/S0378-5173(02)00438-6. [PubMed] [Cross Ref]
3. Duffel MW, Ing IS, Segarra TM, et al. N-substituted sulfonamide carbonic anhydrase inhibitors with topical effects on intraocular pressure. J Med Chem. 1986;29:1488–1494. doi: 10.1021/jm00158a028. [PubMed] [Cross Ref]
4. Friedman Z, Allen RC, Steven MR. Topical acetazolamide and methazolamide delivered by contact lenses. Arch Ophthalmol. 1985;103:936–966. [PubMed]
5. Tous SS, Nasser KAE. Acetazolamide topical formulation and ocular effect. STP Pharm Sci. 1992;2:125–131.
6. Loftsson T, Fridriksdottir H, Thorisdottir S, et al. Topically effective ocular hypotensive acetazolamide and ethoxyzolamide formulation in rabbits. J Pharm Pharmacol. 1994;46:503–504. [PubMed]
7. Kaur IP, Singh M, Kanwar M. Formulation and evaluation of ophthalmic preparation of acetazolamide. Int J Pharm. 2000;199:119–127. doi: 10.1016/S0378-5173(00)00359-8. [PubMed] [Cross Ref]
8. Kaur IP, Smitha R. Penetration enhancers and ocular bioadhesives: two new avenues for ophthalmic drug delivery. Drug Dev Ind Pharm. 2002;28:473–493. doi: 10.1081/DDC-120003445. [PubMed] [Cross Ref]
9. Guinedi AS, Mortada ND, Mansour S, et al. Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Int J Pharm. 2005;306:71–82. doi: 10.1016/j.ijpharm.2005.09.023. [PubMed] [Cross Ref]
10. El-Gazayerly ON, Hikal AK. Preparation and evaluation of acetazolamide liposomes as an ocular delivery system. Int J Pharm. 1997;158:121–127. doi: 10.1016/S0378-5173(97)00186-5. [Cross Ref]
11. Szoka F, Papahodjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci USA. 1978;75:4194–4198. doi: 10.1073/pnas.75.9.4194. [PubMed] [Cross Ref]
12. Arrowsmith M, Hadgraft J, Kellaway IW. The in vitro release of steroids from liposomes. Int J Pharm. 1983;14:191–208. doi: 10.1016/0378-5173(83)90093-5. [Cross Ref]
13. Law SL, Shih CL. Characterization of calcitonin-containing liposomes formulations for intranasal delivery. J Microencapsul. 2001;18:211–221. doi: 10.1080/02652040010000334. [PubMed] [Cross Ref]
14. Gulati M, Grover M, Singh M, Singh S. Study of azathioprine encapsulation into liposomes. J Microencapsul. 1998;15:485–494. doi: 10.3109/02652049809006875. [PubMed] [Cross Ref]
15. Perugini P, Pavanetto F. Liposomes containing boronophenylalanine for boron neutron capture therapy. J Microencapsul. 1998;15:473–483. doi: 10.3109/02652049809006874. [PubMed] [Cross Ref]
16. Winum J, Casini A, Mincione F, et al. Carbonic anhydrase inhibitors: N-(p-sulfamoyl phenyl)-α-D-glycopyranosylamines as topically acting antiglaucoma agents in hypertensive rabbits. Bioorg Med Chem Lett. 2004;14:225–229. doi: 10.1016/j.bmcl.2003.09.063. [PubMed] [Cross Ref]
17. Monem AS, Ali FM, Ismail MW. Prolonged effect of liposomes encapsulating pilocarpine HCl in normal and glaucomatous rabbits. Int J Pharm. 2000;198:29–38. doi: 10.1016/S0378-5173(99)00348-8. [PubMed] [Cross Ref]
18. Plessis J, Ramachandran C, Weiner N, Muller DG. The influence of lipid composition and lamellarity of liposomes on the physical stability of liposomes upon storage. Int J Pharm. 2007;127:273–278. doi: 10.1016/0378-5173(95)04281-4. [Cross Ref]
19. Morilla MJ, Benavidez P, Lopez MO, Bakas L, Romero EL. Development and in vitro characterization of a benznidazole liposomal formulation. Int J Pharm. 2002;249:89–99. doi: 10.1016/S0378-5173(02)00453-2. [PubMed] [Cross Ref]
20. Law SL, Hung HY. Properties of acyclovir-containing liposomes for potential ocular delivery. Int J Pharm. 1998;161:253–259. doi: 10.1016/S0378-5173(97)00362-1. [Cross Ref]
21. Srinath P, Vyas SP, Prakash VD. Preparation and pharmacodynamic evaluation of liposomes of indomethacin. Drug Dev Ind Pharm. 2000;26:313–321. doi: 10.1081/DDC-100100359. [PubMed] [Cross Ref]
22. Nagarsenker MS, Londhe VY, Nadkarni GD. Preparation and evaluation of liposomal formulations of tropicamide for ocular delivery. Int J Pharm. 1999;190:63–71. doi: 10.1016/S0378-5173(99)00265-3. [PubMed] [Cross Ref]
23. Gruner SM. Materials properties of liposomal bilayers. In: Ostro MJ, editor. Liposomes From Biophysics to Therapeutics. New York, NY: Marcel Dekker; 1997. pp. 1–38.
24. Nagarsenker MS, Londhe VY. Preparation and evaluation of a liposomal formulation of sodium cromoglicate. Int J Pharm. 2003;251:49–56. doi: 10.1016/S0378-5173(02)00583-5. [PubMed] [Cross Ref]
25. Peschka R, Dennehy C, Szoka FCL. A simple in vitro model to study the release kinetics of liposome encapsulated material. J Control Release. 1998;56:41–51. doi: 10.1016/S0168-3659(98)00067-4. [PubMed] [Cross Ref]
26. Stuhne-Sekalec L, Stancev NZ. Liposomes as carriers of cyclosporine A. J Microencapsul. 1991;8:441–446. doi: 10.3109/02652049109021867. [PubMed] [Cross Ref]
27. Finkelestein MC, Weismann G. Enzyme replacement via liposomes: variation in lipid composition determined liposomal integrity in biological fluid. Biochim Biophys Acta. 1979;587:202–216. [PubMed]
28. Alpar OH, Bamford JB, Walters V. The in vitro incorporation and release of hydroxocobalamin by liposomes. Int J Pharm. 1981;7:349–351. doi: 10.1016/0378-5173(81)90062-4. [Cross Ref]
29. Juliano RL, Stamp D. Pharmacokinetics of liposome-encapsulated antitumor drugs. Biochem Pharmacol. 1978;27:21–27. doi: 10.1016/0006-2952(78)90252-6. [PubMed] [Cross Ref]
30. Arica B, Ozer AY, Ercan MT, et al. Characterization and in vitro studies on primaquine diphosphate liposomes. J Microencapsul. 1995;12:469–485. doi: 10.3109/02652049509006778. [PubMed] [Cross Ref]
31. al-Muhammad J, Ozer AY, Hincal AA. Studies on the formulation and in vitro release of ophthalmic liposomes containing dexamethasone sodium phosphate. J Microencapsul. 2007;13:123–130. doi: 10.3109/02652049609052901. [PubMed] [Cross Ref]
32. Glavas-Dodov M, Goracinova K, Mladenovska K, et al. Release profile of lidocaine HCl from topical liposomal gel formulation. Int J Pharm. 2002;242:381–384. doi: 10.1016/S0378-5173(02)00221-1. [PubMed] [Cross Ref]
33. Nagarsenker MS, Joshi AA. Preparation, characterization and evaluation of liposomal dispersions of lidocaine. Drug Dev Ind Pharm. 1997;23:1159–1165. doi: 10.3109/03639049709146153. [Cross Ref]
34. Armengol X, Estelrich J. Physical stability of different liposome compositions obtained by extrusion method. J Microencapsul. 1995;12:525–535. doi: 10.3109/02652049509006783. [PubMed] [Cross Ref]
35. Pietzyk B, Henschke K. Degradation of phosphatidylcholine in liposomes containing carboplatin in dependence on composition and storage conditions. Int J Pharm. 2000;196:215–218. doi: 10.1016/S0378-5173(99)00425-1. [PubMed] [Cross Ref]
36. Velpandian T, Gupta SK, Gupta YK, Biswas NR, Agarwal HC. Ocular drug targeting by liposomes and their corneal interactions. J Microencapsul. 1999;16:243–250. doi: 10.1080/026520499289211. [PubMed] [Cross Ref]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists