Search tips
Search criteria 


Logo of aapspharmspringer.comThis journalToc AlertsSubmit OnlineOpen Choice
AAPS PharmSciTech. 2006 December; 7(4): E70–E76.
Published online 2014 March 30. doi:  10.1208/pt070492
PMCID: PMC2750329

Preparation and characterization of Pluronic-colloidal silicon dioxide composite particles as liquid crystal precursor


The purpose of this study was to produce spray-dried Pluronic-colloidal silicon dioxide (Aerosil) composite particles as a liquid crystal precursor that would form a liquid crystalline phase upon hydration. A Pluronic-colloidal silicon dioxide dispersion in isopropyl alcohol was spray-dried to obtain composite particles using different concentrations of Aerosil. Polarizing microscopy, gelation, gel melting, and rheological studies were employed to characterize the composite particles. The composite particles obtained were irregular, with concave depression. Gelation was found to decrease with the addition of Aerosil, while gel melting was found to increase with the concentration of Aerosil. Rheological studies showed an increase in elasticity as well as viscosity with an increase in the concentration of Aerosil. Composite particles showed improved gelation and rheological properties. These composite particles and the process by which they were obtained may be useful for designing various drug delivery systems.

Full Text

The Full Text of this article is available as a PDF (510K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
1. Shah CJ, Sadhale Y, Chilukuri DM. Cubic phase gels as drug delivery systems. Adv Drug Del Rev. 2001;47:229–250. doi: 10.1016/S0169-409X(01)00108-9. [PubMed] [Cross Ref]
2. Sallam AS, Khalil E, Ibrahim H, Freij I. Formulation of an oral dosage form uitlizing the properties of cubic liquid crystalline phases of glyceryl monooleate. Eur J Pharm Biopharm. 2002;53:343–352. doi: 10.1016/S0939-6411(02)00016-4. [PubMed] [Cross Ref]
3. Mortensen K. Structural study of aqueous solutions of PEO-PPO-PEO triblock copolymers, their micellar aggregates and mesophases: a small angle neutron scattering study. J Phys Condens Matter. 1996;8:A103–A124. doi: 10.1088/0953-8984/8/25A/008. [Cross Ref]
4. Malmsten M, Lindman B. Self-assembly in aqueous block copolymer solutions. Macromolecules. 1992;25:5440–5445. doi: 10.1021/ma00046a049. [Cross Ref]
5. Alexandridis P, Zhou D, Khan A. Lyotropic liquid crystallinity in amphiphilic block copolymers: temperature effect on phase behaviour and structure for poly(ethylene oxide)-b-poly (propylene oxide)-b-poly (ethylene oxide0 copolymers of different composition. Langmuir. 1996;12:2690–2700. doi: 10.1021/la951025s. [Cross Ref]
6. Engstrom S, Ljusberg-Wahren H, Gustafsson A. Bioadhesive properties of the monoolein-water system. Pharm Technol Eur. 1995;7:14–17.
7. Ericsson B, Eriksson PO, Lofroth JE, Engstrom S. Cubic phases as delivery system for peptide drugs. Washington, DC: American Chemical Society; 1991. pp. 251–265.
8. Norling T, Lading P, Engstrom S, Larsson K, Nissen SS. Formulation of a drug delivery system based on a mixture of monoglycerides and triglycerides for use in the treatment of periodontal disease. J Clin Periodontol. 1992;19:687–692. doi: 10.1111/j.1600-051X.1992.tb02529.x. [PubMed] [Cross Ref]
9. Nielsen LS, Schubert L, Hansen J. Bioadhesive drug delivery system, I: characterization of mucoadhesive properties of systems based on glyceryl monooleate and glyceryl monolinoleate. Eur J Pharm Sci. 1998;6:231–239. doi: 10.1016/S0928-0987(97)10004-5. [PubMed] [Cross Ref]
10. Wyatt DM, Dorschel D. A cubic phase delivery system composed of glyceryl monooleate and water for sustained release of water-soluble drugs. Pharm Technol. 1992;16:116–116.
11. Engstrom S, Norden TP, Nyquist H. Cubic phases for studies of drug partition into lipid bilayers. Eur J Pharm Sci. 1999;8:243–254. doi: 10.1016/S0928-0987(99)00012-3. [PubMed] [Cross Ref]
12. Geraghty PB, Attwood D, Collet JH, Dandikaer Y. The in vitro release of some antimuscarinic drugs from monoolein/water lyotropic lipid crystalline gels. Pharm Res. 1996;13:1265–1271. doi: 10.1023/A:1016036908947. [PubMed] [Cross Ref]
13. Nylander T, Mattisson C, Razumas V, Miezis Y, Hakansson B. A study of entrapped enzyme stability and substrate diffusion in a monoglyceride-based cubic liquid crystalline phase. Colloids Surf A: Physicochem Eng Aspects. 1996;114:311–320. doi: 10.1016/0927-7757(96)03563-7. [Cross Ref]
14. Shah MH, Paradkar A. Cubic liquid crystalline glyceryl monooleate matrices for oral delivery of enzyme. Int J Pharm. 2005;294:161–171. doi: 10.1016/j.ijpharm.2005.01.019. [PubMed] [Cross Ref]
15. Spicer PT, Small WB, Lynch ML, Burns JL. Dry powder precursor of cubic liquid crystalline nanoparticles (cubosomes) J Nanopar Res. 2002;4:297–311. doi: 10.1023/A:1021184216308. [Cross Ref]
16. Veyries ML, Couarraze G, Geiger S, et al. Controlled release of vancomycin from poloxamer 407 gels. Int J Pharm. 1999;192:183–193. doi: 10.1016/S0378-5173(99)00307-5. [PubMed] [Cross Ref]
17. Park H, Park K. Biocompatibility issues of implantable drug delivery. Pharm Res. 1996;13:1770–1776. doi: 10.1023/A:1016012520276. [PubMed] [Cross Ref]
18. Paavola A, Kilpelaine I, Yliruusi J, Rosenberg P. Controlled release injectable liposomal gel of ibuprofen for epidural analgesia. Int J Pharm. 2000;199:85–93. doi: 10.1016/S0378-5173(00)00376-8. [PubMed] [Cross Ref]
19. Kim SY, Ha JC, Lee M. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)/poly(epsilon-caprolactone) (PCL) amphiphilic block copolymeric nanospheres, II: thermo-responsive drug-release behaviors. J Control Release. 2000;65:345–358. doi: 10.1016/S0168-3659(99)00207-2. [PubMed] [Cross Ref]
20. Ricci EJ, Lunardi LO, Nanclares DMA, Marchetti JM. Sustained release of lidocaine from Poloxamer 407 gels. Int J Pharm. 2005;288:235–244. doi: 10.1016/j.ijpharm.2004.09.028. [PubMed] [Cross Ref]
21. Pisal SS, Paradkar AR, Mahadik KR, Kadam SS. Pluronic gels for nasal delivery of Vitamin B12. Part I: preformulation study. Int J Pharm. 2004;270:37–45. doi: 10.1016/j.ijpharm.2003.10.005. [PubMed] [Cross Ref]
22. Pandit N, Trygstad T, Croy S, Bohorque M, Kock C. Effect of salts on the micellization, clouding and solubilization behavior of Pluronic F127 solutions. J Colloid Interface Sci. 2000;222:213–220. doi: 10.1006/jcis.1999.6628. [PubMed] [Cross Ref]
23. El-Kamel AH. In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int J Pharm. 2002;241:47–55. doi: 10.1016/S0378-5173(02)00234-X. [PubMed] [Cross Ref]
24. Lin H, Sung KC. Carbopol/pluronic phase change solution for ophthalmic drug delivery. J Control Release. 2000;69:379–388. doi: 10.1016/S0168-3659(00)00329-1. [PubMed] [Cross Ref]
25. Raghavan SR, Walls HJ, Khan SA. Rheology of silica dispersions in organic liquids: new evidence for solvation forces dictated by hydrogen bonding. Langmuir. 2000;16:7920–7930. doi: 10.1021/la991548q. [Cross Ref]
26. Rosevear FB. The microscopy of the liquid crystalline neat and middle phases of soaps and synthetic detergents. J Am Oil Chem Soc. 1954;31:628–639. doi: 10.1007/BF02545595. [Cross Ref]
27. Miller SC, Donovan MD. Effect of poloxamer 407 gel on the miotic activity of pilocarpine nitrate in rabbits. Int J Pharm. 1982;12:147–152. doi: 10.1016/0378-5173(82)90114-4. [Cross Ref]
28. Ferry JD. Viscoelastic Properties of Polymers. New York, NY: Wiley; 1970.
29. Ceulemans J, Ludwig A. Optimization of carbomer viscous eye drops: an in vitro experimental design approach using rheological techniques. Eur J Pharm Biopharm. 2002;54:41–50. doi: 10.1016/S0939-6411(02)00036-X. [PubMed] [Cross Ref]
30. Marriott C. Rheology and flow of fluids. In: Aulton ME, editor. Pharmaceutics: The Science of Dosage Form Design. New York, NY: Churchill Livingstone; 1988. pp. 264–287.
31. Cabana A, Ait-kadi A, Juhasz J. Study of the gelation process of polyethylene oxide-polypropylene oxide-polyethylene oxide copolymer (poloxamer 407) aqueous solution. J Colloid Interface Sci. 1997;190:307–312. doi: 10.1006/jcis.1997.4880. [PubMed] [Cross Ref]
32. Ivanova R, Lindman B, Alexandris P. Effect of pharmaceutically acceptable glycols on the stability of the liquid crystalline gels formed by poloxamer 407 in water. J Colloid Interface Sci. 2002;252:226–235. doi: 10.1006/jcis.2002.8417. [PubMed] [Cross Ref]
33. Evans F, Wennerstrom H. The Colloidal Domain. New York, NY: Wiley VCH; 1999.
34. Wanka G, Hoffmann H, Ulbricht V. Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions. Macromolecules. 1994;27:4145–4159. doi: 10.1021/ma00093a016. [Cross Ref]
35. Song MJ, Lee DS, Ahn JH, Kim DJ, Kim SC. Dielectric behavior during sol-gel transition of PEO-PPO-PEO triblock copolymer aqueous solution. Polym Bull. 2000;43:497–504. doi: 10.1007/s002890050007. [Cross Ref]
36. Bohorquez M, Kock C, Tryastad T, Pandit N. A study of temperature-dependent micellization of pluronic F127. J Colloid Interface Sci. 1992;216:34–40. doi: 10.1006/jcis.1999.6273. [PubMed] [Cross Ref]
37. Martin AN. Physical Pharmacy. 4th ed. Philadelphia, PA: Lea & Febiger; 1993.
38. Wei G, Xu H, Ding PT, Li SM, Zheng JM. Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies. J Control Release. 2002;83:65–74. doi: 10.1016/S0168-3659(02)00175-X. [PubMed] [Cross Ref]
39. Tamburic S, Craig DQM, Vuleta G, Milic J. An investigation into the use of thermorheology and texture analysis in the evaluation of W/O creams stabilized with a silicone emulsifier. Pharm Dev Technol. 1996;1:299–306. doi: 10.3109/10837459609022599. [PubMed] [Cross Ref]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists