Search tips
Search criteria 


Logo of aapspharmspringer.comThis journalToc AlertsSubmit OnlineOpen Choice
AAPS PharmSciTech. 2004 September; 5(3): 68–81.
Published online 2005 August 5. doi:  10.1208/pt050347
PMCID: PMC2750269

Measurement of fluid viscosity at microliter volumes using quartz impedance analysis


The purpose of this work was to measure viscosity of fluids at low microliter volumes by means of quartz crystal impedance analysis. To achieve this, a novel setup was designed that allowed for measurement of viscosity at volumes of 8 to 10 μL. The technique was based on the principle of electromechanical coupling of piezoelectric quartz crystals. The arrangement was simple with measurement times ranging from 2 to 3 minutes. The crystal setup assembly did not impose any unwanted initial stress on the unloaded quartz crystal. Quartz crystals of 5- and 10-MHz fundamental frequency were calibrated with glycerol-water mixtures of known density and viscosity prior to viscosity measurements. True frequency shifts, for the purpose of this work, were determined followed by viscosity measurement of aqueous solutions of sucrose, urea, PEG-400, glucose, and ethylene glycol at 25°C±0.5°C. The measured viscosities were found to be reproducible and consistent with the values reported in the literature. Minor inconsistencies in the measured resistance and frequency shifts did not affect the results significantly, and were found to be experimental in origin rather than due to electrode surface roughness. Besides, as expected for a viscoelastic fluid, PEG 8000 solutions, the calculated viscosities were found to be less than the reported values due to frequency dependence of storage and loss modulus components of complex viscosity. From the results, it can be concluded that the present setup can provide accurate assessment of viscosity of Newtonian fluids and also shows potential for analyzing non-Newtonian fluids at low microliter volumes.

Full Text

The Full Text of this article is available as a PDF (260K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
1. Macosko CW. Rheology: Principles, Measurement and Applications. New York, NY: Wiley-VCH; 1994.
2. Larson RG. The Structure and Rheology of Complex Fluids. New York, NY: Oxford University Press; 1999.
3. Kudryashov ED, Hunt NT, Arikainen EO, Buckin VA. Monitoring of acidified milk gel formation by ultrasonic shear wave measurements. High-frequency viscoelastic moduli of milk and acidified milk gel. J Dairy Sci. 2001;84:375–388. doi: 10.3168/jds.S0022-0302(01)74487-6. [PubMed] [Cross Ref]
4. Mason WP. Measurement of the viscosity and shear elasticity of liquids by means of a torsionally vibrating crystal. Trans Am Soc Mech Eng. 1947;68:359–370.
5. Mason WP, Baker WO, McSkimin HJ, Heiss JH. Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies. Phys Rev. 1949;75:936–946. doi: 10.1103/PhysRev.75.936. [Cross Ref]
6. Hoummady M, Bastien F. Acoustic wave viscometer. Rev Sci Instrum. 1991;62:1999–2003. doi: 10.1063/1.1142353. [Cross Ref]
7. Bruckenstein S, Shay M. Experimental aspects of use of the quartz crystal microbalance in solution. Electrochim Acta. 1985;30:1295–1300. doi: 10.1016/0013-4686(85)85005-2. [Cross Ref]
8. Kanazawa KK, Gordon JG. The oscillation frequency of a quartz resonator in contact with liquid. Anal Chim Acta. 1985;175:99–105. doi: 10.1016/S0003-2670(00)82721-X. [Cross Ref]
9. Kauzlarich JJ, Ross RA, Abdallah DS. A new electronic viscometer based on Rayleigh wave mechanics. Tribotest. 1998;5:135–143. doi: 10.1002/tt.3020050204. [Cross Ref]
10. Buckin V, Kudryashov E. Ultrasonic shear wave rheology of weak particle gels. Adv Colloid Interface Sci. 2001;89–90:401–422. doi: 10.1016/S0001-8686(00)00060-9. [PubMed] [Cross Ref]
11. Morray B, Li S, Hossenlopp J, Cernosek R, Josse F. PMMA polymer film characterization using thickness-shear mode (TSM) quartz resonator. New Orleans, LA: Institute of Electrical and Electronics Engineers; 2002. pp. 294–300.
12. Calvo EJ, Etchenique R, Bartlett PN, Singhal K, Santamaria C. Quartz crystal impedance studies at 10 MHz of viscoelastic liquids and films. Faraday Discuss. 1997;107:141–157. doi: 10.1039/a703551i. [Cross Ref]
13. Bandey HL, Hillman AR, Brown MJ, Martin SJ. Viscoelastic characterization of electroactive polymer films at the electrode/solution interface. Faraday Discuss. 1997;107:105–121. doi: 10.1039/a704278g. [Cross Ref]
14. Ash DC, Joyce MJ, Barnes C, Booth CJ, Jefferies AC. Viscosity measurement of industrial oils using the droplet quartz crystal microbalance. Meas Sci Technol. 2003;14:1955–1962. doi: 10.1088/0957-0233/14/11/013. [Cross Ref]
15. Buttry DA, Ward MD. Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem Rev. 1992;92:1355–1379. doi: 10.1021/cr00014a006. [Cross Ref]
16. Martin SJ, Bandey HL, Cernosek RW, Hillman AR, Brown MJ. Equivalent-circuit model for the thickness-shear mode resonator with a viscoelastic film near film resonance. Anal Chem. 2000;72:141–149. doi: 10.1021/ac9908290. [PubMed] [Cross Ref]
17. Sauerbrey G. The use of quartz oscillators for weighing thin layers and for microweighing. Z Phys. 1959;155:206–222. doi: 10.1007/BF01337937. [Cross Ref]
18. Ferrante F, Kipling AL, Thompson M. Molecular slip at the solid-liquid interface of an acoustic-wave sensor. J Appl Physiol. 1994;76:3448–3462. doi: 10.1063/1.357475. [Cross Ref]
19. Thiesen LA, Martin SJ, Hillman AR. A model for the quartz crystal microbalance crystal response to wetting characteristics of corrugated surfaces. Anal Chem. 2004;76:796–804. doi: 10.1021/ac034777x. [PubMed] [Cross Ref]
20. Nwankwo E, Durning CJ. Impedance analysis of thickness-shear mode quartz crystal resonators in contact with linear viscoelastic media. Rev Sci Instrum. 1998;69:2375–2384. doi: 10.1063/1.1148963. [Cross Ref]
21. Reed CE, Kanazawa KK, Kaufman JH. Physical description of a viscoelastically loaded AT-cut quartz resonator. J Appl Physiol. 1990;68:1993–2001. doi: 10.1063/1.346548. [Cross Ref]
22. Lucklum R, Hauptmann P. Determination of polymer shear modulus with quartz crystal resonators. Faraday Discuss. 1997;107:123–140. doi: 10.1039/a703127k. [Cross Ref]
23. Bandey HL, Martin SJ, Cernosek RW, Hillman AR. Modeling the responses of thickness-shear mode resonators under various loading conditions. Anal Chem. 1999;71:2205–2214. doi: 10.1021/ac981272b. [PubMed] [Cross Ref]
24. Martin SJ, Frye GC, Ricco AJ, Senturia SD. Effect of surface roughness on the response of thickness-shear mode resonators in liquids. Anal Chem. 1993;65:2910–2922. doi: 10.1021/ac00068a033. [Cross Ref]
25. Behrends R, Kaatze U. A high frequency shear wave impedance spectrometer for low viscosity liquids. Meas Sci Technol. 2001;12:519–524. doi: 10.1088/0957-0233/12/4/318. [Cross Ref]
26. Arnau A, Jimenez Y, Sogorb T. Thickness-shear mode quartz crystal resonators in viscoelastic fluid media. J Appl Physiol. 2000;88:4498–4506. doi: 10.1063/1.1309122. [Cross Ref]
27. Reddy SM, Jones JP, John Lewis T. Use of combined shear and pressure acoustic waves to study interfacial and bulk viscoelastic effects in aqueous polymeric gels and the influence of electrode potentials. Faraday Discuss. 1997;107:177–196. doi: 10.1039/a703479b. [Cross Ref]
28. Martin SJ, Granstaff VE, Frye GC. Characterization of quartz crystal microbalance with simultaneous mass and liquid loading. Anal Chem. 1991;63:2272–2281. doi: 10.1021/ac00020a015. [Cross Ref]
29. Muramatsu H, Tamiya E, Karube I. Computation of equivalent circuit parameters of quartz crystals in contact with liquids and study of liquid properties. Anal Chem. 1988;60:2142–2146. doi: 10.1021/ac00170a032. [Cross Ref]
30. Kipling AL, Thompson M. Network analysis method applied to liquid-phase acoustic wave sensors. Anal Chem. 1990;62:1514–1519. doi: 10.1021/ac00213a032. [Cross Ref]
31. International Critical Tables of Numerical Data, Physics, Chemistry and Technology. New York, NY: McGraw Hill Book Company; 1926.
32. Sheely ML. Glycerol viscosity tables. Ind Eng Chem. 1932;24:1060–1064. doi: 10.1021/ie50273a022. [Cross Ref]
33. Bund A, Schwitzgebel G. Viscoelastic properties of low-viscosity liquids studied with thickness-shear mode resonators. Anal Chem. 1998;70:2584–2588. doi: 10.1021/ac9711798. [PubMed] [Cross Ref]
34. Kurosawa S, Tawara E, Kamo N, Kobatake Y. Oscillating frequency of piezoelectric quartz crystal in solutions. Anal Chim Acta. 1990;230:41–49. doi: 10.1016/S0003-2670(00)82759-2. [Cross Ref]
35. James CJ, Mulcahy DE, Steel BJ. Viscometer calibration standards: viscosities of water between 0 and and of selected aqueous sucrose solutions at from measurements with a flared capillary viscometer. J Phys D Appl Physiol. 1984;17:225–230. doi: 10.1088/0022-3727/17/2/006. [Cross Ref]
36. Barlow AJ, Lamb J. The visco-elastic behaviour of lubricating oils under cyclic shearing stress. P Roy Soc Lond A Mat. 1959;253:52–69. doi: 10.1098/rspa.1959.0178. [Cross Ref]
37. Cernosek RW, Martin SJ, Hillman AR, Bandey HL. Comparison of lumped-element and transmission-line model for thickness-shear-mode quartz resonator sensors. IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45:1399–1407. doi: 10.1109/58.726468. [Cross Ref]
38. Stockbridge CD. Resonance frequency versus mass added to quartz crystals. In: Behrndt KH, editor. Vacuum Microbalance Techniques. New York, NY: Plenum; 1966. pp. 193–205.
39. Gonzalez-Tello P, Camacho F, Blazquez G. Density and viscosity of concentrated aqueous solutions of polyethylene glycol. J Chem Eng Data. 1994;39:611–614. doi: 10.1021/je00015a050. [Cross Ref]
40. Barlow AJ, Subramanian S. Experimental technique for the determination of the visco-elastic properties of liquids in the frequency range 5–75 Mc. Brit J Appl Phys. 1966;17:1201–1214. doi: 10.1088/0508-3443/17/9/313. [Cross Ref]

Articles from AAPS PharmSciTech are provided here courtesy of American Association of Pharmaceutical Scientists