PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of bmcgenoBioMed Centralsearchsubmit a manuscriptregisterthis articleBMC Genomics
 
BMC Genomics. 2009; 10: 280.
Published online Jun 24, 2009. doi:  10.1186/1471-2164-10-280
PMCID: PMC2711118
Impact of animal strain on gene expression in a rat model of acute cardiac rejection
Katherine J Deans,#1,4,6 Peter C Minneci,#1,4,5 Hao Chen,1 Steven J Kern,1 Carolea Logun,1 Sara Alsaaty,1 Kelly J Norsworthy,1 Stephanie M Theel,1 Joel D Sennesh,3 Jennifer J Barb,2 Peter J Munson,2 Robert L Danner,1 and Michael A Solomoncorresponding author1,6
1Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD, USA
2Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, NIH, Bethesda, MD, USA
3Department of Pathology, Inova Fairfax Hospital, Fairfax, VA, USA
4Department of Surgery, The Children's Institute for Surgical Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
5Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
6Cardiovascular Branch, NHLBI, NIH, Bethesda, MD, USA
corresponding authorCorresponding author.
#Contributed equally.
Katherine J Deans: deansk/at/email.chop.edu; Peter C Minneci: minneci/at/email.chop.edu; Hao Chen: chenhao/at/cc.nih.gov; Steven J Kern: kernsj/at/cc.nih.gov; Carolea Logun: CLogun/at/cc.nih.gov; Sara Alsaaty: SAlsaaty/at/cc.nih.gov; Kelly J Norsworthy: kelly.norsworthy/at/gmail.com; Stephanie M Theel: smtheel/at/yahoo.com; Joel D Sennesh: Joel.Sennesh/at/inova.org; Jennifer J Barb: barbj/at/mail.nih.gov; Peter J Munson: munson/at/mail.nih.gov; Robert L Danner: RDanner/at/cc.nih.gov; Michael A Solomon: msolomon/at/cc.nih.gov
Received February 18, 2009; Accepted June 24, 2009.
Abstract
Background
The expression levels of many genes show wide natural variation among strains or populations. This study investigated the potential for animal strain-related genotypic differences to confound gene expression profiles in acute cellular rejection (ACR). Using a rat heart transplant model and 2 different rat strains (Dark Agouti, and Brown Norway), microarrays were performed on native hearts, transplanted hearts, and peripheral blood mononuclear cells (PBMC).
Results
In heart tissue, strain alone affected the expression of only 33 probesets while rejection affected the expression of 1368 probesets (FDR 10% and FC ≥ 3). Only 13 genes were affected by both strain and rejection, which was < 1% (13/1368) of all probesets differentially expressed in ACR. However, for PBMC, strain alone affected 265 probesets (FDR 10% and FC ≥ 3) and the addition of ACR had little further effect. Pathway analysis of these differentially expressed strain effect genes connected them with immune response, cell motility and cell death, functional themes that overlap with those related to ACR. After accounting for animal strain, additional analysis identified 30 PBMC candidate genes potentially associated with ACR.
Conclusion
In ACR, genetic background has a large impact on the transcriptome of immune cells, but not heart tissue. Gene expression studies of ACR should avoid study designs that require cross strain comparisons between leukocytes.
Articles from BMC Genomics are provided here courtesy of
BioMed Central