PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of neurotherwww.springer.comThis journalToc AlertsSubmit OnlineOpen Choice
 
Neurotherapeutics. 2009 April; 6(2): 312–318.
PMCID: PMC2700027
NIHMSID: NIHMS108792

Alteration of epileptogenesis genes

Summary

Retrospective studies suggest that precipitating events such as prolonged seizures, stroke, or head trauma increase the risk of developing epilepsy later in life. The process of epilepsy development, known as epileptogenesis, is associated with changes in the expression of a myriad of genes. One of the major challenges for the epilepsy research community has been to determine which of these changes contributes to epileptogenesis, which may be compensatory, and which may be noncontributory. Establishing this for any given gene is essential if it is to be considered a therapeutic target for the prevention or treatment of epilepsy. Our laboratories have examined alterations in gene expression related to inhibitory neurotransmission that have been proposed as contributing factors in epileptogenesis. The GABAA receptor mediates most fast synaptic inhibition, and changes in GABAA receptor subunit expression and function have been reported in adult animals beginning immediately after prolonged seizures (status epilepticus [SE]) and continue as animals become chronically epileptic. Prevention of GABAA receptor subunit changes after SE using viral gene transfer inhibits development of epilepsy in an animal model, suggesting that these changes directly contribute to epileptogenesis. The mechanisms that regulate differential expression of GABAA receptor subunits in hippocampus after SE have recently been identified, and include the CREB-ICER, JAK-STAT, BDNF, and Egr3 signaling pathways. Targeting signaling pathways that alter the expression of genes involved in epileptogenesis may provide novel therapeutic approaches for preventing or inhibiting the development of epilepsy after a precipitating insult.

Key Words: GABA receptor subunits, epilepsy, epileptogenesis, hippocampus, gene transfer, transcriptional regulation

References

1. Mehta AK, Ticku MK. An update on GABAA receptors. Brain Res Brain Res Rev. 1999;29:196–217. doi: 10.1016/S0165-0173(98)00052-6. [PubMed] [Cross Ref]
2. Whiting PJ. The GABA-A receptor gene family: new targets for therapeutic intervention. Neurochem Int. 1999;34:387–390. doi: 10.1016/S0197-0186(99)00048-0. [PubMed] [Cross Ref]
3. Vicini S. Pharmacologic significance of the structural heterogeneity of the GABAA receptor-chloride ion channel complex. Neuropsychopharmacology. 1991;14:9–15. [PubMed]
4. Laurie DJ, Wisden W, Seeburg PH. The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain: III. Embryonic and postnatal development. J Neurosci. 1992;12:4151–4172. [PubMed]
5. Wisden W, Laurie DJ, Monyer H, Seeburg PH. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain: I. Telencephalon, diencephalon, mesencephalon. J Neurosci. 1992;12:1040–1062. [PubMed]
6. Macdonald RL, Olsen RW. GABAA receptor channels. Annu Rev Neurosci. 1994;17:569–602. [PubMed]
7. Brooks-Kayal AR, Shumate MD, Jin H, Rikhter TY, Coulter DA. Selective changes in single cell GABAA receptor subunit expression and function in temporal lobe epilepsy [Erratum in: Nat Med 1999;5:590] Nat Med. 1998;4:1166–1172. doi: 10.1038/2661. [PubMed] [Cross Ref]
8. Peng Z, Huang CS, Stell BM, Mody I, Houser CR. Altered expression of the δ subunit of the GABAA receptor in a mouse model of temporal lobe epilepsy. J Neurosci. 2004;24:8629–8639. doi: 10.1523/JNEUROSCI.2877-04.2004. [PubMed] [Cross Ref]
9. Zhang N, Wei W, Mody I, Houser CR. Altered localization of GABAA receptor subunits on dentate granule cell dendrites influences tonic and phasic inhibition in a mouse model of epilepsy. J Neurosci. 2007;27:7520–7531. doi: 10.1523/JNEUROSCI.1555-07.2007. [PubMed] [Cross Ref]
10. Cohen AS, Lin DD, Quirk GL, Coulter DA. Dentate granule cell GABAA receptors in epileptic hippocampus: enhanced synaptic efficacy and altered pharmacology. Eur J Neurosci. 2003;17:1607–1616. doi: 10.1046/j.1460-9568.2003.02597.x. [PMC free article] [PubMed] [Cross Ref]
11. Houser CR, Esclapez M. Downregulation of the α5 subunit of the GABAA receptor in the pilocarpine model of temporal lobe epilepsy. Hippocampus. 2003;13:633–645. doi: 10.1002/hipo.10108. [PubMed] [Cross Ref]
12. Brooks-Kayal AR, Shumate MD, Jin H, et al. Human neuronal γ-aminobutyric acidA receptors: coordinated subunit mRNA expression and functional correlates in individual dentate granule cells. J Neurosci. 1999;19:8312–8318. [PubMed]
13. Zhang G, Raol YH, Hsu FC, Coulter DA, Brooks-Kayal AR. Effects of status epilepticus on hippocampal GABAA receptors are age-dependent. Neuroscience. 2004;125:299–303. doi: 10.1016/j.neuroscience.2004.01.040. [PMC free article] [PubMed] [Cross Ref]
14. Raol YH, Lund IV, Bandyopadhyay S, et al. Enhancing GABAA receptor α1 subunit levels in hippocampal dentate gyrus inhibits epilepsy development in an animal model of temporal lobe epilepsy. J Neurosci. 2006;26:11342–11346. doi: 10.1523/JNEUROSCI.3329-06.2006. [PubMed] [Cross Ref]
15. Roberts DS, Raol YH, Bandyopadhyay S, et al. Egr3 stimulation of GABRA4 promoter activity as a mechanism for seizure-induced up-regulation of GABAA receptor α4 subunit expression. Proc Natl Acad Sci U S A. 2005;102:11894–11899. doi: 10.1073/pnas.0501434102. [PubMed] [Cross Ref]
16. Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002;35:605–623. doi: 10.1016/S0896-6273(02)00828-0. [PubMed] [Cross Ref]
17. Jaworski JB, Mioduszewska A, Sánchez-Capelo A, et al. Inducible cAMP early repressor, an endogenous antagonist of cAMP responsive element-binding protein, evokes neuronal apoptosis in vitro. J Neurosci. 2003;23:4519–4526. [PubMed]
18. Molina CA, Foulkes NS, Lalli E, Sassone-Corsi P. Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor. Cell. 1993;75:875–886. doi: 10.1016/0092-8674(93)90532-U. [PubMed] [Cross Ref]
19. Steiger JL, Russek SJ. GABAA receptors: building the bridge between subunit mRNAs, their promoters, and cognate transcription factors [Erratum in: Pharmacol Ther 2004;103:261] Pharmacol Ther. 2004;101:259–281. doi: 10.1016/j.pharmthera.2003.12.002. [PubMed] [Cross Ref]
20. Fitzgerald LR, Vaidya VA, Terwilliger RZ, Duman RS. Electro-convulsive seizure increases the expression of CREM (cyclic AMP response element modulator) and ICER (inducible cyclic AMP early repressor) in rat brain. J Neurochem. 1996;66:429–432. doi: 10.1046/j.1471-4159.1996.66010429.x. [PubMed] [Cross Ref]
21. Lee B, Dziema H, Lee KH, Choi YS, Obrietan K. CRE-mediated transcription and COX-2 expression in the pilocarpine model of status epilepticus. Neurobiol Dis. 2007;25:80–91. doi: 10.1016/j.nbd.2006.08.015. [PMC free article] [PubMed] [Cross Ref]
22. Lund IV, Hu Y, Raol YH, et al. BDNF selectively regulates GABAA receptor transcription by the activation of the JAK/STAT pathway. Science Signal. 2008;1(41):ra9–ra9. doi: 10.1126/scisignal.1162396. [PMC free article] [PubMed] [Cross Ref]
23. Hu Y, Lund IV, Gravielle MC, Farb DH, Brooks-Kayal AR, Russek SJ. Surface expression of GABAA receptors is transcriptionally controlled by the interplay of cAMP-response element-binding protein and its binding partner inducible cAMP early repressor. J Biol Chem. 2008;283:9328–9340. doi: 10.1074/jbc.M705110200. [PMC free article] [PubMed] [Cross Ref]
24. McNamara JO, Huang YZ, Leonard AS. Molecular signaling mechanisms underlying epileptogenesis. Science STKE 2006;(356):re12. [PubMed]
25. Múdo G, Jiang XH, Timmusk T, Bindoni M, Belluardo N. Change in neurotrophins and their receptor mRNAs in the rat forebrain after status epilepticus induced by pilocarpine. Epilepsia. 1996;37:198–207. doi: 10.1111/j.1528-1157.1996.tb00012.x. [PubMed] [Cross Ref]
26. Rudge JS, Mather PE, Pasnikowski EM, et al. Endogenous BDNF protein is increased in adult rat hippocampus after a kainic acid induced excitotoxic insult but exogenous BDNF is not neuroprotective. Exp Neurol. 1998;149:398–410. doi: 10.1006/exnr.1997.6737. [PubMed] [Cross Ref]
27. Binder DK, Croll SD, Gall CM, Scharfman HE. BDNF and epilepsy: too much of a good thing? Trends Neurosci. 2001;24:47–53. doi: 10.1016/S0166-2236(00)01682-9. [PubMed] [Cross Ref]
28. Altar CA, Laeng P, Jurata LW, et al. Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways. J Neurosci. 2004;24:2667–2677. doi: 10.1523/JNEUROSCI.5377-03.2004. [PubMed] [Cross Ref]
29. Roberts DS, Hu Y, Lund IV, Brooks-Kayal AR, Russek SJ. Brain-derived neurotrophic factor (BDNF)-induced synthesis of early growth response factor 3 (Egr3) controls the levels of type A GABA receptor α4 subunits in hippocampal neurons. J Biol Chem. 2006;281:29431–29435. doi: 10.1074/jbc.C600167200. [PubMed] [Cross Ref]
30. Darnell JE, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264:1415–1421. doi: 10.1126/science.8197455. [PubMed] [Cross Ref]
31. Zhong Z, Wen Z, Darnell J. STAT3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science. 1994;264:95–98. doi: 10.1126/science.8140422. [PubMed] [Cross Ref]
32. Zhong Z, Wen Z, Darnell JE. STAT3 and STAT4: members of the family of signal transducers and activators of transcription. Proc Natl Acad Sci U S A. 1994;91:4806–4810. doi: 10.1073/pnas.91.11.4806. [PubMed] [Cross Ref]
33. Schindler C, Darnell JE. Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem. 1995;64:621–651. doi: 10.1146/annurev.bi.64.070195.003201. [PubMed] [Cross Ref]
34. Ihle JN. STATs: signal transducers and activators of transcription. Cell. 1996;84:331–334. doi: 10.1016/S0092-8674(00)81277-5. [PubMed] [Cross Ref]
35. Aaronson DS, Horvath CM. A road map for those who don’t know JAK-STAT. Science. 2002;296:1653–1655. doi: 10.1126/science.1071545. [PubMed] [Cross Ref]
36. Dowlati A, Nethery D, Kern JA. Combined inhibition of epidermal growth factor receptor and JAK/STAT pathways results in greater growth inhibition in vitro than single agent therapy. Mol Cancer Ther. 2004;3:459–463. [PubMed]
37. Burdelya L, Catlett-Falcone R, Levitzki A, et al. Combination therapy with AG-490 and interleukin 12 achieves greater antitumor effects than either agent alone. Mol Cancer Ther. 2002;1:893–899. [PubMed]
38. Amit-Vazina M, Shishodia S, Harris D, et al. Atiprimod blocks STAT3 phosphorylation and induces apoptosis in multiple myeloma cells. Br J Cancer. 2005;93:70–80. doi: 10.1038/sj.bjc.6602637. [PMC free article] [PubMed] [Cross Ref]
39. Faderl S, Ferrajoli A, Harris D, Van Q, Kantarjian HM, Estrov Z. Atiprimod blocks phosphorylation of JAK-STAT and inhibits proliferation of acute myeloid leukemia (AML) cells. Leuk Res. 2007;31:91–95. doi: 10.1016/j.leukres.2006.05.027. [PubMed] [Cross Ref]
40. White G, Gurley D. Alpha subunits influence Zn block of γ2 containing GABAA receptor currents. Neuroreport. 1995;6:461–464. doi: 10.1097/00001756-199502000-00014. [PubMed] [Cross Ref]
41. Jones-Davis DM, Macdonald RL. GABAA receptor function and pharmacology in epilepsy and status epilepticus. Curr Opin Pharmacol. 2003;3:12–18. doi: 10.1016/S1471-4892(02)00015-2. [PubMed] [Cross Ref]
42. Lagrange AH, Botzolakis EJ, Macdonald RL. Enhanced macroscopic desensitization shapes the response of α4 subtype-containing GABAA receptors to synaptic and extrasynaptic GABA. J Physiol. 2007;578:655–676. doi: 10.1113/jphysiol.2006.122135. [PubMed] [Cross Ref]
43. O’Donovan KJ, Tourtellotte WG, Millbrandt J, Baraban JM. The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience. Trends Neurosci. 1999;22:167–173. doi: 10.1016/S0166-2236(98)01343-5. [PubMed] [Cross Ref]
44. Mazarati A, Liu H, Soomets U, et al. Galanin modulation of seizures and seizure modulation of hippocampal galanin in animal models of status epilepticus. J Neurosci. 1998;18:10070–10077. [PubMed]
45. Mazarati AM, Hohmann JG, Bacon A, et al. Modulation of hippocampal excitability and seizures by galanin. J Neurosci. 2000;20:6276–6281. [PubMed]
46. Haberman RP, Samulski RJ, McCown TJ. Attenuation of seizures and neuronal death by adeno-associated virus vector galanin expression and secretion. Nat Med. 2003;9:1076–1080. doi: 10.1038/nm901. [PubMed] [Cross Ref]
47. Kanter-Schlifke I, Toft Sørensen A, Ledri M, Kuteeva E, Hökfelt T, Kokaia M. Galanin gene transfer curtails generalized seizures in kindled rats without altering hippocampal synaptic plasticity. Neuroscience. 2007;150:984–992. doi: 10.1016/j.neuroscience.2007.09.056. [PubMed] [Cross Ref]
48. Sollenberg U, Bartfai T, Langel U. Galnon: a low-molecular weight ligand of the galanin receptors. Neuropeptides. 2005;39:161–163. doi: 10.1016/j.npep.2004.12.019. [PubMed] [Cross Ref]
49. Saar K, Mazarati AM, Mahlapuu R, et al. Anticonvulsant activity of a nonpeptide galanin receptor agonist. Proc Natl Acad Sci U S A. 2002;99:7136–7141. doi: 10.1073/pnas.102163499. [PubMed] [Cross Ref]
50. Nadler JV, Tu B, Timofeeva O, Jiao Y, Herzog H. Neuropeptide Y in the recurrent mossy fiber pathway. Peptides. 2007;28:357–364. doi: 10.1016/j.peptides.2006.07.026. [PMC free article] [PubMed] [Cross Ref]
51. Erickson JC, Clegg KE, Palmiter RD. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature. 1996;381:415–421. doi: 10.1038/381415a0. [PubMed] [Cross Ref]
52. Noé F, Pool AH, Nissinen J, et al. Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy. Brain. 2008;131:1506–1515. doi: 10.1093/brain/awn079. [PubMed] [Cross Ref]
53. Young D, Dragunow M. Status epilepticus may be caused by loss of adenosine anticonvulsant mechanisms. Neuroscience. 1994;58:245–261. doi: 10.1016/0306-4522(94)90032-9. [PubMed] [Cross Ref]
54. Rebola N, Porciúncula LO, Lopes LV, Oliveira CR, Soares-da-Silva P, Cunha RA. Long-term effect of convulsive behavior on the density of adenosine A1 and A2A receptors in the rat cerebral cortex. Epilepsia. 2005;46(Suppl 5):159–165. doi: 10.1111/j.1528-1167.2005.01026.x. [PubMed] [Cross Ref]
55. Güttinger M, Padrun V, Pralong WF, Boison D. Seizure suppression and lack of adenosine A1 receptor desensitization after focal long-term delivery of adenosine by encapsulated myoblasts. Exp Neurol. 2005;193:53–64. doi: 10.1016/j.expneurol.2004.12.012. [PubMed] [Cross Ref]
56. Ren G, Li T, Lan JQ, Wilz A, Simon RP, Boison D. Lentiviral RNAi-induced downregulation of adenosine kinase in human mesenchymal stem cell grafts: a novel perspective for seizure control. Exp Neurol. 2007;208:26–37. doi: 10.1016/j.expneurol.2007.07.016. [PMC free article] [PubMed] [Cross Ref]
57. Wilz A, Pritchard EM, Li T, Lan JQ, Kaplan DL, Boison D. Silk polymer-based adenosine release: therapeutic potential for epilepsy. Biomaterials. 2008;29:3609–3616. doi: 10.1016/j.biomaterials.2008.05.010. [PMC free article] [PubMed] [Cross Ref]
58. Saavedra A, Baltazar G, Duarte EP. Driving GDNF expression: the green and the red traffic lights. Prog Neurobiol. 2008;86:186–215. doi: 10.1016/j.pneurobio.2008.09.006. [PubMed] [Cross Ref]
59. Mikuni N, Babb TL, Chakravarty DN, Christi W. Time course of transient expression of GDNF protein in rat granule cells of the bilateral dentate gyri after unilateral intrahippocampal kainic acid injection. Neurosci Lett. 1999;262:215–218. doi: 10.1016/S0304-3940(99)00074-9. [PubMed] [Cross Ref]
60. Martin D, Miller G, Rosendahl M, Russell DA. Potent inhibitory effects of glial derived neurotrophic factor against kainic acid mediated seizures in the rat. Brain Res. 1995;683:172–178. doi: 10.1016/0006-8993(95)00369-2. [PubMed] [Cross Ref]
61. Li S, Xu B, Martin D, Racine RJ, Fahnestock M. Glial cell line-derived neurotrophic factor modulates kindling and activation-induced sprouting in hippocampus of adult rats. Exp Neurol. 2002;178:49–58. doi: 10.1006/exnr.2002.8036. [PubMed] [Cross Ref]
62. Kanter-Schlifke I, Georgievska B, Kirik D, Kokaia M. Seizure suppression by GDNF gene therapy in animal models of epilepsy. Mol Ther. 2007;15:1106–1113. [PubMed]
63. Kojima N, Borlikova G, Sakamoto T, et al. Inducible cAMP early repressor acts as a negative regulator for kindling epileptogenesis and long-term fear memory. J Neurosci. 2008;28:6459–6472. doi: 10.1523/JNEUROSCI.0412-08.2008. [PubMed] [Cross Ref]
64. Porter BE, Lund IV, Varodayan FP, Wallace RW, Blendy JA. The role of transcription factors cyclic-AMP responsive element modulator (CREM) and inducible cyclic-AMP early repressor (ICER) in epileptogenesis. Neuroscience. 2008;152:829–836. doi: 10.1016/j.neuroscience.2007.10.064. [PMC free article] [PubMed] [Cross Ref]

Articles from Neurotherapeutics are provided here courtesy of Springer