PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of neurotherwww.springer.comThis journalToc AlertsSubmit OnlineOpen Choice
 
Neurotherapeutics. 2009 April; 6(2): 392–401.
PMCID: PMC2682439
NIHMSID: NIHMS108790

Neurosteroid replacement therapy for catamenial epilepsy

Summary

Perimenstrual catamenial epilepsy, the cyclical occurrence of seizure exacerbations near the time of menstruation, affects a high proportion of women of reproductive age with drug-refractory epilepsy. Enhanced seizure susceptibility in perimenstrual catamenial epilepsy is believed to be due to the withdrawal of the progesterone-derived GABAA receptor modulating neurosteroid allopregnanolone as a result of the fall in progesterone at the time of menstruation. Studies in a rat pseudopregnancy model of catamenial epilepsy indicate that after neurosteroid withdrawal there is enhanced susceptibility to chemoconvulsant seizures. There is also a transitory increase in the frequency of spontaneous seizures in epileptic rats that had experienced pilocarpine-induced status epilepticus. In the catamenial epilepsy model, there is a marked reduction in the antiseizure potency of anticonvulsant drugs, including benzodiazepines and valproate, but an increase in the anticonvulsant potency and protective index of neurosteroids such as allopregnanolone and the neurosteroid analog ganaxolone. The enhanced seizure susceptibility and benzodiazepine-resistance subsequent to neurosteroid withdrawal may be related to reduced expression and altered kinetics of synaptic GABAA receptors and increased expression of GABAA receptor subunits (such as α4) that confer benzodiazepine insensitivity. The enhanced potency of neurosteroids may be due to a relative increase after neurosteroid withdrawal in the expression of neurosteroid-sensitive δ-subunit-containing perisynaptic or extrasynaptic GABAA receptors. Positive allosteric modulatory neurosteroids and synthetic analogs such as ganaxolone may be administered to prevent catamenial seizure exacerbations, in what we call neurosteroid replacement therapy.

Key Words: Catamenial epilepsy, progesterone, neurosteroid, allopregnanolone, ganaxolone, GABAA receptor

Contributor Information

Doodipala S. Reddy, ude.cshmat.enicidem@ydder.

Michael A. Rogawski, ude.sivadcu@ikswagor.

References

1. Newmark ME, Penry JK. Catamenial epilepsy: a review. Epilepsia. 1980;21:281–300. doi: 10.1111/j.1528-1157.1980.tb04074.x. [PubMed] [Cross Ref]
2. Herzog AG, Klein P, Ransil BJ. Three patterns of catamenial epilepsy. Epilepsia. 1997;38:1082–1088. doi: 10.1111/j.1528-1157.1997.tb01197.x. [PubMed] [Cross Ref]
3. Panayiotopoulos CP, Obeid T, Tahan AR. Juvenile myoclonic epilepsy: a 5-year prospective study. Epilepsia. 1994;35:285–296. doi: 10.1111/j.1528-1157.1994.tb02432.x. [PubMed] [Cross Ref]
4. Agathonikou A, Koutroumanidis M, Panayiotopoulos CP. Fixation-off-sensitive epilepsy with absences and absence status: video-EEG documentation. Neurology. 1997;48:231–234. [PubMed]
5. Duncan S, Read CL, Brodie MJ. How common is catamenial epilepsy? Epilepsia. 1993;34:827–831. doi: 10.1111/j.1528-1157.1993.tb02097.x. [PubMed] [Cross Ref]
6. Taubøll E, Lundervold A, Gjerstad L. Temporal distribution of seizures in epilepsy. Epilepsy Res. 1991;8:153–165. doi: 10.1016/0920-1211(91)90084-S. [PubMed] [Cross Ref]
7. Herzog AG, Harden CL, Liporace J, et al. Frequency of catamenial seizure exacerbation in women with localization-related epilepsy. Ann Neurol. 2004;56:431–434. doi: 10.1002/ana.20214. [PubMed] [Cross Ref]
8. Bazan AC, Montenegro MA, Cendes F, Min LL, Guerreiro CA. Menstrual cycle worsening of epileptic seizures in women with symptomatic focal epilepsy. Arq Neuropsiquiatr. 2005;63(3B):751–756. [PubMed]
9. Lim LL, Foldvary N, Mascha E, Lee J. Acetazolamide in women with catamenial epilepsy. Epilepsia. 2001;42:746–749. doi: 10.1046/j.1528-1157.2001.33600.x. [PubMed] [Cross Ref]
10. Browne TR, Leduc BW, Kosta-Rokosz MD, Bromfield EB, Ramsay RE, De Toledo J. Trimethadione, paraldehyde, phenacemide, bromides, sulthiame, acetazolamide, and methsuximide. In: Engel J, Pedley TA, editors. Epilepsy, a comprehensive textbook. 2nd ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2008. pp. 1703–1719.
11. Rogawski MA, Porter RJ. Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev. 1990;42:223–286. [PubMed]
12. Staley KJ, Soldo BL, Proctor WR. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science. 1995;269:977–981. doi: 10.1126/science.7638623. [PubMed] [Cross Ref]
13. Pathak HR, Weissinger F, Terunuma M, et al. Disrupted dentate granule cell chloride regulation enhances synaptic excitability during development of temporal lobe epilepsy. J Neurosci. 2007;27:14012–14022. doi: 10.1523/JNEUROSCI.4390-07.2007. [PMC free article] [PubMed] [Cross Ref]
14. Bonnet U, Bingmann D. GABAA-responses of CA3 neurones: contribution of bicarbonate and of Cl-extrusion mechanisms. Neuroreport. 1995;6:700–704. doi: 10.1097/00001756-199503000-00028. [PubMed] [Cross Ref]
15. Feely M, Gibson J. Intermittent clobazam for catamenial epilepsy. J Neurol Neurosurg Psychiatry. 1984;47:1279–1282. doi: 10.1136/jnnp.47.12.1279. [PMC free article] [PubMed] [Cross Ref]
16. Rogawski MA, Reddy DS. Neurosteroids: endogenous modulators of seizure susceptibility. In: Rho JM, Sankar R, Cavazos JE, editors. Epilepsy: scientific foundations of clinical practice. New York: Marcel Dekker; 2004. pp. 319–355.
17. Reddy DS. Role of neurosteroids in catamenial epilepsy. Epilepsy Res. 2004;62:99–118. doi: 10.1016/j.eplepsyres.2004.09.003. [PubMed] [Cross Ref]
18. Reddy DS. Perimenstrual catamenial epilepsy. Women’s Health. 2007;3(2):195–206. [PubMed]
19. Bonuccelli U, Melis GB, Paoletti AM, Fioretti P, Muni L, Muratorio A. Unbalanced progesterone and estradiol secretion in catamenial epilepsy. Epilepsy Res. 1989;3:100–106. doi: 10.1016/0920-1211(89)90037-5. [PubMed] [Cross Ref]
20. Scharfman HE, MacLusky NJ. The influence of gonadal hormones on neuronal excitability, seizures and epilepsy in the female. Epilepsia. 2006;47:1423–1440. doi: 10.1111/j.1528-1167.2006.00672.x. [PMC free article] [PubMed] [Cross Ref]
21. Buterbaugh GG. Estradiol replacement facilitates the acquisition of seizures kindled from the anterior neocortex in female rats. Epilepsy Res. 1989;4:207–215. doi: 10.1016/0920-1211(89)90005-3. [PubMed] [Cross Ref]
22. Velisková J. Estrogens and epilepsy: why are we so excited? Neuroscientist. 2007;13:77–88. doi: 10.1177/1073858406295827. [PubMed] [Cross Ref]
23. Brinton RD, Thompson RF, Foy MR, et al. Progesterone receptors: form and function in brain. Front Neuroendocrinol. 2008;29:313–339. [PMC free article] [PubMed]
24. Reddy DS, Castaneda DC, O’Malley BW, Rogawski MA. Anti-convulsant activity of progesterone and neurosteroids in progesterone receptor knockout mice. J Pharmacol Exp Ther. 2004;310:230–239. doi: 10.1124/jpet.104.065268. [PubMed] [Cross Ref]
25. Selye H. Antagonism between anesthetic steroid hormones and pentamethylenetetrazol (Metrazol) J Lab Clin Med. 1942;27:1051–1053.
26. Frye CA, Rhodes ME, Walf A, Hamey J. Progesterone reduces pentylenetetrazol-induced ictal activity of wild-type mice but not those deficient in type I 5α-reductase. Epilepsia. 2002;43(Suppl 5):14–17. doi: 10.1046/j.1528-1157.43.s.5.19.x. [PubMed] [Cross Ref]
27. Lonsdale D, Bumham WM. The anticonvulsant effects of progesterone and 5α-dihydroprogesterone on amygdala-kindled seizures in rats. Epilepsia. 2003;44:1494–1499. doi: 10.1111/j.0013-9580.2003.59402.x. [PubMed] [Cross Ref]
28. Kokate TG, Banks MK, Magee T, Yamaguchi S, Rogawski MA. Finasteride, a 5α-reductase inhibitor, blocks the anticonvulsant activity of progesterone in mice. J Pharmacol Exp Ther. 1999;288:679–684. [PubMed]
29. Tuveri A, Paoletti AM, Orrú M, et al. Reduced serum level of THDOC, an anticonvulsant steroid, in women with perimenstrual catamenial epilepsy. Epilepsia. 2008;49:1221–1229. doi: 10.1111/j.1528-1167.2008.01555.x. [PubMed] [Cross Ref]
30. Ebner MJ, Corol DI, Havlíková H, Honour JW, Fry JP. Identification of neuroactive steroids and their precursors and metabolites in adult male rat brain. Endocrinology. 2006;147:179–190. doi: 10.1210/en.2005-1065. [PubMed] [Cross Ref]
31. Agís-Balboa RC, Pinna G, Zhubi A, et al. Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proc Natl Acad Sci U S A. 2006;103:14602–14607. doi: 10.1073/pnas.0606544103. [PubMed] [Cross Ref]
32. Mukai Y, Higashi T, Nagura Y, Shimada K. Studies on neurosteroids: XXV. Influence of a 5α-reductase inhibitor, finasteride, on rat brain neurosteroid levels and metabolism. Biol Pharm Bull. 2008;31:1646–1650. doi: 10.1248/bpb.31.1646. [PubMed] [Cross Ref]
33. Hardoy MC, Sardu C, Dell’osso L, Carta MG. The link between neurosteroids and syndromic/syndromal components of the mood spectrum disorders in women during the premenstrual phase. Clin Pract Epidemol Ment Health. 2008;4:3–3. doi: 10.1186/1745-0179-4-3. [PMC free article] [PubMed] [Cross Ref]
34. Kaminski RM, Livingood MR, Rogawski MA. Allopregnanolone analogs that positively modulate GABA receptors protect against partial seizures induced by 6-Hz electrical stimulation in mice. Epilepsia. 2004;45:864–867. doi: 10.1111/j.0013-9580.2004.04504.x. [PubMed] [Cross Ref]
35. van Luijtelaar G, Budziszewska B, Jaworska-Feil L, Ellis J, Coenen A, Lasoń W. The ovarian hormones and absence epilepsy: a long-term EEG study and pharmacological effects in a genetic absence epilepsy model. Epilepsy Res. 2001;46:225–239. doi: 10.1016/S0920-1211(01)00277-7. [PubMed] [Cross Ref]
36. Snead OC. Ganaxolone, a selective, high-affinity steroid modulator of the γ-aminobutyric acid-A receptor, exacerbates seizures in animal models of absence. Ann Neurol. 1998;44:688–691. doi: 10.1002/ana.410440417. [PubMed] [Cross Ref]
37. van Luijtelaar G, Budziszewska B, Tetich M, Lasoń W. Finasteride inhibits the progesterone-induced spike-wave discharges in a genetic model of absence epilepsy. Pharmacol Biochem Behav. 2003;75:889–894. doi: 10.1016/S0091-3057(03)00162-X. [PubMed] [Cross Ref]
38. Kokate TG, Svensson BE, Rogawski MA. Anticonvulsant activity of neurosteroids: correlation with γ-aminobutyric acid-evoked chloride current potentiation. J Pharmacol Exp Ther. 1994;270:1223–1229. [PubMed]
39. Lambert JJ, Belelli D, Peden DR, Vardy AW, Peters JA. Neurosteroid modulation of GABAA receptors. Prog Neurobiol. 2003;71:67–80. doi: 10.1016/j.pneurobio.2003.09.001. [PubMed] [Cross Ref]
40. Akk G, Shu HJ, Wang C, et al. Neurosteroid access to the GABAA receptor. J Neurosci. 2005;25:11605–11613. doi: 10.1523/JNEUROSCI.4173-05.2005. [PubMed] [Cross Ref]
41. Meldrum BS, Rogawski MA. Molecular targets for antiepileptic drug development. Neurotherapeutics. 2007;4:18–61. doi: 10.1016/j.nurt.2006.11.010. [PMC free article] [PubMed] [Cross Ref]
42. Glykys J, Mody I. Activation of GABAA receptors: views from outside the synaptic cleft. Neuron. 2007;56:763–770. doi: 10.1016/j.neuron.2007.11.002. [PubMed] [Cross Ref]
43. Hosie AM, Wilkins ME, Smart TG. Neurosteroid binding sites on GABAA receptors. Pharmacol Ther. 2007;116:7–19. doi: 10.1016/j.pharmthera.2007.03.011. [PubMed] [Cross Ref]
44. Hosie AM, Clarke L, da Silva H, Smart TG. Conserved site for neurosteroid modulation of GABAA receptors. Neuropharmacology. 2009;56:149–154. doi: 10.1016/j.neuropharm.2008.07.050. [PubMed] [Cross Ref]
45. Belelli D, Casula A, Ling A, Lambert JJ. The influence of subunit composition on the interaction of neurosteroids with GABAA receptors. Neuropharmacology. 2002;43:651–661. doi: 10.1016/S0028-3908(02)00172-7. [PubMed] [Cross Ref]
46. Wohlfarth KM, Bianchi MT, Macdonald RL. Enhanced neurosteroid potentiation of ternary GABAA receptors containing the δ subunit. J Neurosci. 2002;22:1541–1549. [PubMed]
47. Smith SS, Shen H, Gong QH, Zhou X. Neurosteroid regulation of GABAA receptors: focus on the α4 and δ subunits. Pharmacol Ther. 2007;116:58–76. doi: 10.1016/j.pharmthera.2007.03.008. [PMC free article] [PubMed] [Cross Ref]
48. Gulinello M, Gong QH, Li X, Smith SS. Short-term exposure to a neuroactive steroid increases α4 GABAA receptor subunit levels in association with increased anxiety in the female rat. Brain Res. 2001;910:55–66. doi: 10.1016/S0006-8993(01)02565-3. [PMC free article] [PubMed] [Cross Ref]
49. Sur C, Farrar SJ, Kerby J, Whiting PJ, Atack JR, McKernan RM. Referential coassembly of α4 and γ subunits of the γ-aminobutyric acidA receptor in rat thalamus. Mol Pharmacol. 1999;56:110–115. [PubMed]
50. Shen H, Gong QH, Yuan M, Smith SS. Short-term steroid treatment increases δ GABAA receptor subunit expression in rat CA1 hippocampus: pharmacological and behavioral effects. Neuropharmacology. 2005;49:573–586. [PMC free article] [PubMed]
51. Maguire JL, Stell BM, Rafizadeh M, Mody I. Ovarian cycle-linked changes in GABAA receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat Neurosci. 2005;8:797–804. doi: 10.1038/nn1469. [PubMed] [Cross Ref]
52. Maguire J, Mody I. GABAAR plasticity during pregnancy: relevance to postpartum depression. Neuron. 2008;59:207–213. doi: 10.1016/j.neuron.2008.06.019. [PMC free article] [PubMed] [Cross Ref]
53. Smith SS, Gong QH. Neurosteroid administration and withdrawal alter GABAA receptor kinetics in CA1 hippocampus of female rats. J Physiol. 2005;564:421–436. doi: 10.1113/jphysiol.2004.077297. [PubMed] [Cross Ref]
54. Belelli D, Lambert JJ. Neurosteroids: endogenous regulators of the GABAA receptor. Nat Rev Neurosci. 2005;6:565–575. doi: 10.1038/nrn1703. [PubMed] [Cross Ref]
55. Mascia MP, Biggio F, Mancuso L, et al. Changes in GABAA receptor gene expression induced by withdrawal of, but not by long-term exposure to, ganaxolone in cultured rat cerebellar granule cells. J Pharmacol Exp Ther. 2002;303:1014–1020. doi: 10.1124/jpet.102.040063. [PubMed] [Cross Ref]
56. Reddy DS, Kim HY, Rogawski MA. Neurosteroid withdrawal model of perimenstrual catamenial epilepsy. Epilepsia. 2001;42:328–336. doi: 10.1046/j.1528-1157.2001.10100.x. [PubMed] [Cross Ref]
57. Finn DA, Gee KW. The estrus cycle, sensitivity to convulsants and the anticonvulsant effect of a neuroactive steroid. J Pharmacol Exp Ther. 1994;271:164–170. [PubMed]
58. Smith SS, Gong QH, Hsu FC, Markowitz RS, ffrench-Mullen JMH, Li X. GABAA receptor α4 subunit suppression prevents withdrawal properties of an endogenous steroid. Nature. 1998;392:926–930. doi: 10.1038/31948. [PubMed] [Cross Ref]
59. Kim I, Greenwald GS. Steroidogenic effects of lipoproteins and 25-hydroxycholesterol on luteal and ovarian cells: a comparison of two pseudopregnant rat models. Poc Soc Exp Biol Med. 1986;181:242–248. [PubMed]
60. Smith SS, Gong QH, Li X, et al. Withdrawal from 3α-OH-5α-pregnan-20-one using a pseudopregnancy model alters the kinetics of hippocampal GABAA-gated current and increases the GABAA receptor α4 subunit in association with increased anxiety. J Neurosci. 1998;18:5275–5284. [PubMed]
61. Reddy DS, Zeng YC. Effect of neurosteroid withdrawal on spontaneous recurrent seizures in a rat model of catamenial epilepsy. FASEB J. 2007;21:885–885. doi: 10.1096/fj.06-6509com. [PubMed] [Cross Ref]
62. Reddy DS, Rogawski MA. Enhanced anticonvulsant activity of ganaxolone after neurosteroid withdrawal in a rat model of catamenial epilepsy. J Pharmacol Exp Ther. 2000;294:909–915. [PubMed]
63. Reddy DS, Rogawski MA. Enhanced anticonvulsant activity of neuroactive steroids in a rat model of catamenial epilepsy. Epilepsia. 2001;42:337–344. doi: 10.1046/j.1528-1157.2001.10200.x. [PubMed] [Cross Ref]
64. Remy S, Beck H. Molecular and cellular mechanisms of pharma-coresistance in epilepsy. Brain. 2006;129:18–35. doi: 10.1093/brain/awh682. [PubMed] [Cross Ref]
65. Carter RB, Wood PL, Wieland S, et al. Characterization of the anticonvulsant properties of ganaxolone (CCD 1042; 3α-hydroxy-3β-methyl-5α-pregnan-20-one), a selective, high-affinity, steroid modulator of the γ-aminobutyric acidA receptor. J Pharmacol Exp Ther. 1997;280:1284–1295. [PubMed]
66. Reddy DS, Woodward R. Ganaxolone: a prospective overview. Drugs Future. 2004;29:227–242. doi: 10.1358/dof.2004.029.03.793135. [Cross Ref]
67. Nohria V, Giller E. Ganaxolone. Neurotherapeutics. 2007;4:102–105. doi: 10.1016/j.nurt.2006.11.003. [PubMed] [Cross Ref]
68. Garofalo E, Tsai J, Shaw K, Rogawski MA, Pieribone V. Ganaxolone. In: Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS, Progress report on new antiepileptic drugs: a summary of the Ninth Eilat Conference (EILAT IX). Epilepsy Res 2009;83:1–43. [PubMed]
69. Reddy DS, Rogawski MA. Pharmacokinetic-pharmacodynamic comparison of ganaxolone in normal rats and in a rat model of catamenial epilepsy. Epilepsia. 2008;49(Suppl 7):371–371.
70. Kokate TG, Yamaguchi S, Pannell LK, et al. Lack of anticonvulsant tolerance to the neuroactive steroid pregnanolone in mice. J Pharmacol Exp Ther. 1998;287:553–558. [PubMed]
71. Reddy DS, Rogawski MA. Chronic treatment with the neuroactive steroid ganaxolone in the rat induces anticonvulsant tolerance to diazepam but not to itself. J Pharmacol Exp Ther. 2000;295:1241–1248. [PubMed]
72. McAuley JW, Moore JL, Reeves AL, Flyak J, Monaghan EP, Data J. A pilot study of the neurosteroid ganaxolone in catamenial epilepsy: clinical experience in two patients. Epilepsia. 2001;42(Suppl 7):85–85.
73. Herzog AG. Progesterone therapy in women with complex partial and secondary generalized seizures. Neurology. 1995;45:1660–1662. [PubMed]
74. Herzog AG. Progesterone therapy in women with epilepsy: a 3-year follow-up. Neurology. 1999;52:1917–1918. [PubMed]

Articles from Neurotherapeutics are provided here courtesy of Springer