Search tips
Search criteria 


Logo of neurotherwww.springer.comThis journalToc AlertsSubmit OnlineOpen Choice
Neurotherapeutics. 2009 April; 6(2): 278–283.
PMCID: PMC2682344

Engineered adenosine-releasing cells for epilepsy therapy: Human mesenchymal stem cells and human embryonic stem cells


Adenosine is a modulator of neuronal activity with anticonvulsant and neuroprotective properties. Conversely, focal deficiency in adenosine contributes to ictogenesis. Thus, focal reconstitution of adenosine within an epileptogenic brain region constitutes a rational therapeutic approach, whereas systemic augmentation of adenosine is precluded by side effects. To meet the therapeutic goal of focal adenosine augmentation, genetic disruption of the adenosine metabolizing enzyme, adenosine kinase (ADK) in rodent cells was used as a molecular strategy to induce adenosine release from cellular brain implants, which demonstrated antiepileptic and neuroprotective properties. Currently, the second generation of adenosine-releasing cells is under development based on the rationale to use human stem cell-derived brain implants to avoid xenotransplantation. To effectively engineer human stem cells to release adenosine, a lentiviral vector was constructed to express inhibitory micro-RNA directed against ADK. Lentiviral knockdown of ADK induced therapeutic adenosine release in human mesenchymal stem cells, which reduced acute injury and seizures, as well as chronic seizures, when grafted into the mouse hippocampus. The therapeutic potential of this approach suggests the feasibility to engineer autologous adenosine-releasing stem cells derived from a patient. Human embryonic stem cells (hESCs) have a high proliferative capacity and can be subjected to specific cellular differentiation pathways. hESCs, differentiated in vitro into neuroepithelial cells and grafted into the mouse brain, displayed intrahippocampal location and neuronal morphology. Using the same lentiviral micro-RNA vector, we demonstrated knockdown of ADK in hESCs. New developments and therapeutic challenges in using human mesenchymal stem cells and hESCs for epilepsy therapy will be critically evaluated.

Key Words: Adenosine, epilepsy, cell therapy, stem cells, RNAi, rodent models


1. Vajda FJE. Pharmacotherapy of epilepsy: New armamentarium, new issues. J Clin Neurosci. 2007;14:813–823. doi: 10.1016/j.jocn.2007.02.008. [PubMed] [Cross Ref]
2. Nilsen KE, Cock HR. Focal treatment for refractory epilepsy: hope for the future? Brain Res Brain Res Rev. 2004;44:141–153. doi: 10.1016/j.brainresrev.2003.11.003. [PubMed] [Cross Ref]
3. Boison D. Cell and gene therapies for refractory epilepsy. Curr Neuropharmacol. 2007;5:115–125. doi: 10.2174/157015907780866938. [PMC free article] [PubMed] [Cross Ref]
4. Loscher W, Gemert M, Heinemann U. Cell and gene therapies in epilepsy — promising avenues or blind alleys? Trends Neurosci. 2008;31:62–73. doi: 10.1016/j.tins.2007.11.012. [PubMed] [Cross Ref]
5. Shetty AK, Hattiangady B. Concise review: Prospects of stem cell therapy for temporal lobe epilepsy. Stem Cells. 2007;25:2396–2407. doi: 10.1634/stemcells.2007-0313. [PMC free article] [PubMed] [Cross Ref]
6. Raedt R, Van Dycke A, Vonck K, Boon P. Cell therapy in models for temporal lobe epilepsy. Seizure-Eur J Epilepsy. 2007;16:565–578. [PubMed]
7. Shetty AK, Hattiangady B. Restoration of calbindin after fetal hippocampal CA3 cell grafting into the injured hippocampus in a rat model of temporal lobe epilepsy. Hippocampus. 2007;17:943–956. doi: 10.1002/hipo.20311. [PMC free article] [PubMed] [Cross Ref]
8. Rao MS, Hattiangady B, Rai KS, Shetty AK. Strategies for promoting anti-seizure effects of hippocampal fetal cells grafted into the hippocampus of rats exhibiting chronic temporal lobe epilepsy. Neurobiol Dis. 2007;27:117–132. doi: 10.1016/j.nbd.2007.03.016. [PMC free article] [PubMed] [Cross Ref]
9. Rao MS, Hattiangady B, Shetty AK. Fetal hippocampal CA3 cell grafts enriched with FGF-2 and BDNF exhibit robust long-term survival and integration and suppress aberrant mossy fiber sprouting in the injured middle-aged hippocampus. Neurobiol Dis. 2006;21:276–290. doi: 10.1016/j.nbd.2005.07.009. [PubMed] [Cross Ref]
10. Shetty AK, Zaman V, Hattiangady B. Repair of the injured adult hippocampus through graft-mediated modulation of the plasticity of the dentate gyrus in a rat model of temporal lobe epilepsy. J Neurosci. 2005;25:8391–8401. doi: 10.1523/JNEUROSCI.1538-05.2005. [PubMed] [Cross Ref]
11. Boison D. Adenosine-based cell therapy approaches for pharma-coresistant epilepsies. Neurodegener Dis. 2007;4:28–33. doi: 10.1159/000100356. [PubMed] [Cross Ref]
12. Thompson KW. Genetically engineered cells with regulatable GABA production can affect afterdischarges and behavioral seizures after transplantation into the dentate gyrus. Neuroscience. 2005;133:1029–1037. doi: 10.1016/j.neuroscience.2005.03.003. [PubMed] [Cross Ref]
13. Pignataro G, Studer FE, Wilz A, Simon RP, Boison D. Neuroprotection in ischemic mouse brain induced by stem cell-derived brain implants. J Cereb Blood Flow Metab. 2007;27:919–927. doi: 10.1038/sj.jcbfm.9600334. [PubMed] [Cross Ref]
14. Li T, Steinbeck JA, Lusardi T, Koch P, et al. Suppression of kindling epileptogenesis by adenosine releasing stem cell-derived brain implants. Brain. 2007;130:1276–1288. doi: 10.1093/brain/awm057. [PubMed] [Cross Ref]
15. Dunwiddie TV. Endogenously released adenosine regulates excitability in the in vitro hippocampus. Epilepsia. 1980;21:541–548. doi: 10.1111/j.1528-1157.1980.tb04305.x. [PubMed] [Cross Ref]
16. Boison D. The adenosine kinase hypothesis of epileptogenesis. Prog Neurobiol. 2008;84:249–262. doi: 10.1016/j.pneurobio.2007.12.002. [PMC free article] [PubMed] [Cross Ref]
17. Boison D. Adenosine as a modulator of brain activity. Drug News Persp. 2007;20:607–611. doi: 10.1358/dnp.2007.20.10.1181353. [PubMed] [Cross Ref]
18. Boison D. Adenosine kinase, epilepsy and stroke: mechanisms and therapies. Trends Pharmacol Sci. 2006;27:652–658. doi: 10.1016/ [PubMed] [Cross Ref]
19. Boison D. Adenosine and epilepsy: from therapeutic rationale to new therapeutic strategies. Neuroscientist. 2005;11:25–36. doi: 10.1177/1073858404269112. [PubMed] [Cross Ref]
20. Wilz A, Pritchard EM, Li T, Lan JQ, Kaplan DL, Boison D. Silk polymer-based adenosine release: Therapeutic potential for epilepsy. Biomaterials. 2008;29:3609–3616. doi: 10.1016/j.biomaterials.2008.05.010. [PMC free article] [PubMed] [Cross Ref]
21. Li T, Ren G, Lusardi T, Wilz A, et al. Adenosine kinase is a target for the prediction and prevention of epileptogenesis in mice. J Clin Inv. 2008;118:571–582. doi: 10.1172/JCI33637C1. [PMC free article] [PubMed] [Cross Ref]
22. Cunha RA. Neuroprotection by adenosine in the brain: from A1 receptor activation to A2A receptor blockade. Purinergic Signaling. 2005;1:111–134. doi: 10.1007/s11302-005-0649-1. [PMC free article] [PubMed] [Cross Ref]
23. Ribeiro JA. What can adenosine neuromodulation do for neuroprotection? Curr Drug Targets CNS Neurol Disord. 2005;4:325–329. doi: 10.2174/1568007054546090. [PubMed] [Cross Ref]
24. Ribeiro JA, Sebastiao AM, de Mendonca A. Participation of adenosine receptors in neuroprotection. Drug News Perspect. 2003;16:80–86. doi: 10.1358/dnp.2003.16.2.740246. [PubMed] [Cross Ref]
25. Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM. Adenosine and brain function. Int Rev Neurobiol. 2005;63:191–270. doi: 10.1016/S0074-7742(05)63007-3. [PubMed] [Cross Ref]
26. Fredholm BB, Chen JF, Masino SA, Vaugeois JM. Actions of adenosine at its receptors in the CNS: Insights from knockouts and drugs. Annu Rev Pharmacol Toxicol. 2005;45:385–412. doi: 10.1146/annurev.pharmtox.45.120403.095731. [PubMed] [Cross Ref]
27. Fredholm BB, Ijzerman AP, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev. 2001;53:527–552. [PubMed]
28. Benarroch EE. Adenosine and its receptors: multiple modulatory functions and potential therapeutic targets for neurologic disease. Neurology. 2008;70:231–236. doi: 10.1212/ [PubMed] [Cross Ref]
29. Cunha RA. Different cellular sources and different roles of adenosine: A(1) receptor-mediated inhibition through astrocytic-driven volume transmission and synapse-restricted A(2A) receptor-mediated facilitation of plasticity. Neurochem Int. 2008;52:65–72. doi: 10.1016/j.neuint.2007.06.026. [PubMed] [Cross Ref]
30. Fedele DE, Li T, Lan JQ, Fredholm BB, Boison D. Adenosine A1 receptors are crucial in keeping an epileptic focus localized. Exp Neurol. 2006;200:184–190. [PubMed]
31. Kochanek PM, Vagni VA, Janesko KL, Washington CB, et al. Adenosine A1 receptor knockout mice develop lethal status epilepticus after experimental traumatic brain injury. J Cereb Blood Flow Metab. 2006;26:565–575. doi: 10.1038/sj.jcbfm.9600218. [PubMed] [Cross Ref]
32. Boison D. Adenosine as a neuromodulator in neurological diseases. Curr Opin Pharmacol. 2008;8:2–7. doi: 10.1016/j.coph.2007.09.002. [PMC free article] [PubMed] [Cross Ref]
33. Gouder N, Fritschy JM, Boison D. Seizure suppression by adenosine A1 receptor activation in a mouse model of pharmacoresistant epilepsy. Epilepsia. 2003;44:877–885. doi: 10.1046/j.1528-1157.2003.03603.x. [PubMed] [Cross Ref]
34. Gouder N, Scheurer L, Fritschy J-M, Boison D. Overexpression of adenosine kinase in epileptic hippocampus contributes to epileptogenesis. J Neurosci. 2004;24:692–701. doi: 10.1523/JNEUROSCI.4781-03.2004. [PubMed] [Cross Ref]
35. Monopoli A, Conti A, Dionisotti S, Casati C, et al. Pharmacology of the highly selective A1 adenosine receptor agonist 2-chloro-N6-cyclopentyladenosine. Arzneimittelforschung. 1994;44:1305–1312. [PubMed]
36. Boison D, Scheurer L, Zumsteg V, Rülicke T, et al. Neonatal hepatic steatosis by disruption of the adenosine kinase gene. Proc Natl Acad Sci USA. 2002;99:6985–6990. doi: 10.1073/pnas.092642899. [PubMed] [Cross Ref]
37. Erion MD, Wiesner JB, Rosengren S, Ugarkar BG, Boyer SH, Tsuchiya M. Therapeutic potential of adenosine kinase inhibitors as analgesic agents. Drug Dev Res. 2000;50:S14–06.
38. Huber A, Padrun V, Deglon N, Aebischer P, Mohler H, Boison D. Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. Proc Natl Acad Sci USA. 2001;98:7611–7616. doi: 10.1073/pnas.131102898. [PubMed] [Cross Ref]
39. Fedele DE, Koch P, Brüstle O, Scheurer L, et al. Engineering embryonic stem cell derived glia for adenosine delivery. Neurosci Lett. 2004;370:160–165. doi: 10.1016/j.neulet.2004.08.031. [PubMed] [Cross Ref]
40. Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev. 1996;59:89–102. doi: 10.1016/0925-4773(96)00572-2. [PubMed] [Cross Ref]
41. Ciccarelli R, Di Iorio P, Ballerini P, Ambrosini G, et al. Effects of exogenous ATP and related analogues on the proliferation rate of dissociated primary cultures of rat astrocytes. J Neurosci Res. 1994;39:556–566. doi: 10.1002/jnr.490390507. [PubMed] [Cross Ref]
42. Li JY, Christophersen NS, Hall V, Soulet D, Brundin P. Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci. 2008;31:146–153. doi: 10.1016/j.tins.2007.12.001. [PubMed] [Cross Ref]
43. Zhang SC, Li XJ, Johnson MA, Pankratz MT. Human embryonic stem cells for brain repair? Philos Trans R Soc Lond B Biol Sci. 2008;363:87–99. doi: 10.1098/rstb.2006.2014. [PMC free article] [PubMed] [Cross Ref]
44. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–1147. doi: 10.1126/science.282.5391.1145. [PubMed] [Cross Ref]
45. Reubinoff BE, Itsykson P, Turetsky T, Pera MF, et al. Neural progenitors from human embryonic stem cells. Nat Biotechnol. 2001;19:1134–1140. doi: 10.1038/nbt1201-1134. [PubMed] [Cross Ref]
46. Gerrard L, Rodgers L, Cui W. Differentiation of human embryonic stem cells to neural lineages in adherent culture by blocking bone morphogenetic protein signaling. Stem Cells. 2005;23:1234–1241. doi: 10.1634/stemcells.2005-0110. [PubMed] [Cross Ref]
47. Cohen MA, Itsykson P, Reubinoff BE. Neural differentiation of human ES cells. Curr Protoc Cell Biol 2007;Chapter 23:Unit 23.7. [PubMed]
48. Dottori M, Pera MF. Neural differentiation of human embryonic stem cells. Methods Mol Biol. 2008;438:19–30. doi: 10.1007/978-1-59745-133-8_3. [PubMed] [Cross Ref]
49. Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized mid-brain astrocytes. Nat Med. 2006;12:1259–1268. doi: 10.1038/nm1495. [PubMed] [Cross Ref]
50. Ben-Hur T, Idelson M, Khaner H, Pera M, et al. Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells. 2004;22:1246–1255. doi: 10.1634/stemcells.2004-0094. [PubMed] [Cross Ref]
51. Yang D, Zhang ZJ, Oldenburg M, Ayala M, Zhang SC. Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells. 2008;26:55–63. doi: 10.1634/stemcells.2007-0494. [PMC free article] [PubMed] [Cross Ref]
52. Pankratz MT, Li XJ, Lavaute TM, Lyons EA, Chen X, Zhang SC. Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells. 2007;25:1511–1520. doi: 10.1634/stemcells.2006-0707. [PMC free article] [PubMed] [Cross Ref]
53. Abdallah BM, Kassem M. Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther. 2008;15:109–116. doi: 10.1038/ [PubMed] [Cross Ref]
54. Onda T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab. 2008;28:329–340. doi: 10.1038/sj.jcbfm.9600527. [PMC free article] [PubMed] [Cross Ref]
55. Andrews EM, Tsai SY, Johnson SC, Faner JR, et al. Human adult bone marrow-derived somatic cell therapy results in functional recovery and axonal plasticity following stroke in the rat. Exp Neurol. 2008;211:588–592. doi: 10.1016/j.expneurol.2008.02.027. [PMC free article] [PubMed] [Cross Ref]
56. Mahmood A, Lu D, Qu C, Goussev A, Chopp M. Human marrow stromal cell treatment provides long-lasting benefit after traumatic brain injury in rats. Neurosurgery. 2005;57:1026–1031. doi: 10.1227/01.NEU.0000181369.76323.50. [PMC free article] [PubMed] [Cross Ref]
57. Ren G, Li T, Lan JQ, Wilz A, Simon RP, Boison D. Lentiviral RNAi-induced downregulation of adenosine kinase in human mesenchymal stem cell grafts: a novel perspective for seizure control. Exp Neurol. 2007;208:26–37. doi: 10.1016/j.expneurol.2007.07.016. [PMC free article] [PubMed] [Cross Ref]
58. Masino SA, Geiger JD. Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets? Trends Neurosci. 2008;31:273–278. doi: 10.1016/j.tins.2008.02.009. [PMC free article] [PubMed] [Cross Ref]

Articles from Neurotherapeutics are provided here courtesy of Springer