Search tips
Search criteria 


Logo of biolettersThe Royal Society PublishingBiology LettersAboutBrowse By SubjectAlertsFree Trial
Biol Lett. 2009 June 23; 5(3): 364–367.
Published online 2009 March 18. doi:  10.1098/rsbl.2009.0024
PMCID: PMC2679927

Stable isotopes document the trophic structure of a deep-sea cephalopod assemblage including giant octopod and giant squid


Although deep-sea cephalopods are key marine organims, their feeding ecology remains essentially unknown. Here, we report for the first time the trophic structure of an assemblage of these animals (19 species) by measuring the isotopic signature of wings of their lower beaks, which accumulated in stomachs of stranded sperm whales. Overall, the species encompassed a narrow range in δ13C values (1.7‰), indicating that they lived in closely related and overlapping habitats. δ13C values can be interpreted in terms of distribution with the more 13C-depleted species (e.g. Stigmatoteuthis arcturi, Vampyroteuthis infernalis) having a more pelagic habitat than the more 13C-enriched, bathyal species (e.g. Todarodes sagittatus and the giant squid Architeuthis dux). The cephalopods sampled had δ15N values ranging 4.6‰, which is consistent with the species spanning approximately 1.5 trophic levels. Neither the giant octopod (Haliphron atlanticus) nor the giant squid reached the highest trophic position. Species δ15N was independent of body size, with large squids having both the highest (Taningia danae) and lowest (Lepidoteuthis grimaldii) δ15N values. Their trophic position indicates that some species share the top of the food web, together with other megacarnivores such as the sperm whale.

Keywords: marine predator, North Atlantic, pelagic ecosystem, sperm whale, trophic level

Articles from Biology Letters are provided here courtesy of The Royal Society