Search tips
Search criteria 


Logo of celladmigLink to Publisher's site
Cell Adh Migr. 2009 Apr-Jun; 3(2): 179–181.
PMCID: PMC2679881

Integrin switching modulates adhesion dynamics and cell migration


When cells are stimulated to move, for instance during development, wound healing or angiogenesis, they undergo changes in the turnover of their cell-matrix adhesions. This is often accompanied by alterations in the expression profile of integrins—the extracellular matrix receptors that mediate anchorage within these adhesions. Here, we discuss how a shift in expression between two different types of integrins that bind fibronectin can have dramatic consequences for cell-matrix adhesion dynamics and cell motility.

Key words: integrin, fibronectin, migration, cytoskeleton, dynamics

Cells attach to the extracellular matrix (ECM) that surrounds them in specialized structures termed “cell-matrix adhesions.” These come in different flavors including “focal complexes” (small adhesions found in membrane protrusions of spreading and migrating cells), “focal adhesions” (larger adhesions connected by F-actin stress fibers that are derived from focal complexes in response to tension), “fibrillar adhesions” (elongated adhesions associated with fibronectin matrix assembly), and proteolytically active adhesions termed “podosomes” or “invadopodia” found in osteoclasts, macrophages and certain cancer cells. Common to all these structures is the local connection between ECM proteins outside- and the actin cytoskeleton within the cell through integrin transmembrane receptors. The intracellular linkage to filamentous actin is indirect through proteins that concentrate in cell-matrix adhesions such as talin, vinculin, tensin, parvins and others.1

Cell migration is essential for embryonic development and a number of processes in the adult, including immune cell homing, wound healing, angiogenesis and cancer metastasis. In moving cells, cell-matrix adhesion turnover is spatiotemporally controlled.2 New adhesions are made in the front and disassembled in the rear of cells that move along a gradient of motogenic factors or ECM proteins. This balance between formation and breakdown of cell-matrix adhesions is important for optimal cell migration. Several mechanisms regulate the turnover of cell-matrix adhesions. Proteolytic cleavage of talin has been identified as an important step in cell-matrix adhesion disassembly3 and FAK and Src family kinases are required for cell-matrix adhesion turnover and efficient cell migration.4,5 Besides regulating phospho-tyrosine-mediated protein-protein interactions within cell-matrix adhesions, the FAK/Src complex mediates signaling downstream of integrins to Rho GTPases, thus controlling cytoskeletal organization.6,7 The transition from a stationary to a motile state could involve (local) activation of such mechanisms.

Interestingly, conditions of increased cell migration (development, wound healing, angiogenesis, cancer metastasis) are accompanied by shifts in integrin expression with certain integrins being lost and others gained. Most ECM proteins can be recognized by various different integrins. For instance, the ECM protein, fibronectin (Fn) can be recognized by nine different types of integrins and most of these bind to the Arg-Gly-Asp (RGD) motif in the central cell-binding domain. Thus, cell-matrix adhesions formed on Fn contain a mixture of different integrins and shifts in expression from one class of Fn-binding integrins to another will alter the receptor composition of such adhesions. This may provide an alternative means to shift from stationary to motile.

Indeed, we have found that the type of integrins used for binding to Fn strongly affects cell migration. We made use of cells deficient in certain Fn-binding integrins and either restored their expression or compensated for their absence by overexpression of alternative Fn-binding integrins. This allowed us to compare in a single cellular background cell-matrix adhesions containing α5β1 to those containing αvβ3. Despite the fact that these integrins support similar levels of adhesion to Fn, only α5β1 was found to promote a contractile, fibroblastic morphology with centripetal orientation of cell-matrix adhesions8 (Fig. 1). Moreover, RhoA activity is high in the presence of α5β1 and these cells move in a random fashion with a speed of around 25 mm/h. By contrast, in cells using αvβ3 instead, adhesions distribute across the ventral surface, RhoA activity is low, and these cells move with similar speed but in a highly persistent fashion.8,9 Finally, photobleaching experiments using GFP-vinculin and GFP-paxillin demonstrated that cell-matrix adhesions containing α5β1 are highly dynamic whereas adhesions containing αvβ3 are more static.9

Figure 1
Immunofluorescence images. GE11 cells, epithelial β1 knockout cells derived from mouse embryos chimeric for the integrin β1 subunit endogenously express various av integrins, including low levels of αvβ3 and αvβ5. ...

It has been observed that α5β1 and αvβ3 use different recycling routes. Interfering with Rab4-mediated recycling of αvβ3 causes increased Rab11-mediated recycling of α5β1 to the cell surface. In agreement with our findings, the shift to α5β1 leads to increased Rho-ROCK activity and reduced persistence of migration.10 One possible explanation for the different types of migration promoted by these two Fn-binding integrins might involve different signaling and/or adaptor proteins interacting with specific amino acids in their cytoplasmic tails. However, this appears not to be the case: α5β1 in which the cytoplasmic tails of α5 or β1 are replaced by those of αv or β3, respectively, behaves identical to wild type α5β1: it promotes a fibroblast-like morphology with centripetal orientation of cell-matrix adhesions and it drives a non-persistent mode of migration.8,11 Together, these findings point to differences between α5β1 and αvβ3 integrins in the mechanics of their interaction with Fn, which apparently modulates intracellular signaling pathways in control of cell-matrix adhesion dynamics and cell migration.

How might this work? It turns out that although α5β1 and αvβ3 similarly support cell adhesion to immobilized (stretched) Fn, only α5β1 efficiently binds soluble, folded (“inactive”) Fn.11 We have proposed that such interactions with soluble Fn molecules (possibly secreted by the cell itself) may weaken the interaction with the immobilized ligand thereby causing enhanced cell-matrix adhesion dynamics in the presence of α5β1,11 (Fig. 1). Preferential binding of soluble Fn by α5β1 could be explained by differences in accessibility of the RGD binding pocket between α5β1 (more exposed) and αvβ3 (more hidden) as suggested by others.12 If this is the case, immobilization (“stretching”) of Fn apparently leads to reorientation of the RGD motif in such a way that it is easily accessed by both integrins.

The issue is considerably complicated by the fact that other recognition motifs are present in the Fn central cell-binding domain. In addition to the RGD sequence in the tenth Fn type 3 repeat (IIIFn10), binding of α5β1, but not αvβ3, also depends on the PHSRN “synergy” sequence in IIIFn9.1315 The relative contribution of these motifs is controversial and there is structural data pointing either towards a model in which IIIFn9 interacts with α5β1 or towards a model in which IIIFn9 exerts long-range electrostatic steering resulting in a higher affinity interaction without contacting the integrin.16,17 Cell adhesion studies have suggested that an interaction of α5β1 with the synergy region stabilizes the binding to RGD.14,18 Such a two-step interaction may facilitate binding to full length, folded Fn for instance by altering the tilt angle between IIIFn9 and IIIFn10 leading to optimal exposure of the RGD loop, perhaps explaining why αvβ3 (which may not interact with the synergy site) poorly binds soluble Fn.

Others have shown that the RGD motif alone is sufficient for mechanical coupling of αvβ3 to Fn whereas the synergy region is required to provide mechanical strength to the α5β1-Fn bond.19 It appears that the interaction of α5β1 with Fn is particularly dynamic with various conformations of α5β1 interacting with different Fn binding surfaces, including the RGD and synergy sequences as well as other regions in IIIFn9. Thus, besides the above model based on differential binding to soluble Fn molecules, differences in the complexity and dynamics of interactions with immobilized Fn that determine functional binding strength could also underlie the different dynamics of cell-matrix adhesions containing either α5β1 or αvβ3 (Fig. 1).

Precisely how mechanical differences in receptor-ligand interactions result in such remarkably distinct cellular responses is poorly understood. In addition to effects on cell-matrix adhesion dynamics and cytoskeletal organization it is also associated with different activities of Rho GTPases, indicating that mechanical differences between these two integrins must translate into differential activation of intracellular signaling pathways.8,9,11 Possibly, different adhesion dynamics due to distinct mechanisms of receptor-ligand interaction result in different patterns of F-actin organization, which, in turn, affects the formation of signaling platforms. It is also possible that differences in the extent of integrin clustering have an impact on the conformation of one or more cytoplasmic components of the cell-matrix adhesions containing either α5β1 or αvβ3. This could lead to hiding or exposing binding sites for signaling molecules (e.g., upstream regulators of Rho GTPases) or substrates. Whatever the mechanism involved, altering the integrin composition of cell-matrix adhesions through shifts in integrin expression as observed during development, angiogenesis, wound healing and cancer progression may be a driving force in the enhanced cell migration that characterizes those processes.


H. Truong is supported by the Dutch Cancer Society (grant UL 2006-3521)


Previously published online as a Cell Adhesion & Migration E-publication:


1. Danen EHJ. Integrins: an overview of structural and functional aspects. In: Danen EHJ, editor. Integrins and development. Georgetown, TX: Landes Bioscience; 2006. pp. 1–9.
2. Ballestrem C, Hinz B, Imhof BA, Wehrle-Haller B. Marching at the front and dragging behind: differential alphaVbeta3-integrin turnover regulates focal adhesion behavior. J Cell Biol. 2001;155:1319–1332. [PMC free article] [PubMed]
3. Franco SJ, Rodgers MA, Perrin BJ, Han J, Bennin DA, Critchley DR, et al. Calpainmediated proteolysis of talin regulates adhesion dynamics. Nat Cell Biol. 2004;6:977–983. [PubMed]
4. Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature. 1995;377:539–544. [PubMed]
5. Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT, et al. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol. 2004;6:154–161. [PubMed]
6. Arthur WT, Petch LA, Burridge K. Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Curr Biol. 2000;10:719–722. [PubMed]
7. Ren XD, Kiosses WB, Sieg DJ, Otey CA, Schlaepfer DD, Schwartz MA. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J Cell Sci. 2000;113:3673–3678. [PubMed]
8. Danen EH, Sonneveld P, Brakebusch C, Fassler R, Sonnenberg A. The fibronectin-binding integrins alpha5beta1 and alphavbeta3 differentially modulate RhoA-GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis. J Cell Biol. 2002;159:1071–1086. [PMC free article] [PubMed]
9. Danen EH, van Rheenen J, Franken W, Huveneers S, Sonneveld P, Jalink K, et al. Integrins control motile strategy through a Rho-cofilin pathway. J Cell Biol. 2005;169:515–526. [PMC free article] [PubMed]
10. White DP, Caswell PT, Norman JC. alphavbeta3 and alpha5beta1 integrin recycling pathways dictate downstream Rho kinase signaling to regulate persistent cell migration. J Cell Biol. 2007;177:515–525. [PMC free article] [PubMed]
11. Huveneers S, Truong H, Fassler R, Sonnenberg A, Danen EH. Binding of soluble fibronectin to integrin alpha5beta1—link to focal adhesion redistribution and contractile shape. J Cell Sci. 2008;121:2452–2462. [PubMed]
12. Altroff H, Schlinkert R, van der Walle CF, Bernini A, Campbell ID, Werner JM, et al. Interdomain tilt angle determines integrin-dependent function of the ninth and tenth FIII domains of human fibronectin. J Biol Chem. 2004;279:55995–56003. [PMC free article] [PubMed]
13. Aota S, Nomizu M, Yamada KM. The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem. 1994;269:24756–24761. [PubMed]
14. Danen EH, Aota S, van Kraats AA, Yamada KM, Ruiter DJ, van Muijen GN. Requirement for the synergy site for cell adhesion to fibronectin depends on the activation state of integrin alpha5beta1. J Biol Chem. 1995;270:21612–21618. [PubMed]
15. Bowditch RD, Hariharan M, Tominna EF, Smith JW, Yamada KM, Getzoff ED, et al. Identification of a novel integrin binding site in fibronectin. Differential utilization by beta3 integrins. J Biol Chem. 1994;269:10856–10863. [PubMed]
16. Mould AP, Symonds EJ, Buckley PA, Grossmann JG, McEwan PA, Barton SJ, et al. Structure of an integrin-ligand complex deduced from solution x-ray scattering and site-directed mutagenesis. J Biol Chem. 2003;278:39993–39999. [PubMed]
17. Takagi J, Strokovich K, Springer TA, Walz T. Structure of integrin alpha5beta1 in complex with fibronectin. EMBO J. 2003;22:4607–4615. [PubMed]
18. Sechler JL, Corbett SA, Schwarzbauer JE. Modulatory roles for integrin activation and the synergy site of fibronectin during matrix assembly. Mol Biol Cell. 1997;8:2563–2573. [PMC free article] [PubMed]
19. Garcia AJ, Schwarzbauer JE, Boettiger D. Distinct activation states of alpha5beta1 integrin show differential binding to RGD and synergy domains of fibronectin. Biochemistry. 2002;41:9063–9069. [PubMed]

Articles from Cell Adhesion & Migration are provided here courtesy of Taylor & Francis