Search tips
Search criteria 


Logo of nihpaAbout Author manuscriptsSubmit a manuscriptHHS Public Access; Author Manuscript; Accepted for publication in peer reviewed journal;
J Neurosci. Author manuscript; available in PMC 2009 April 8.
Published in final edited form as:
PMCID: PMC2577155

Novel Selective Allosteric Activator of the M1 Muscarinic Acetylcholine Receptor Regulates Amyloid Processing and Produces Antipsychotic-like Activity in Rats


Recent studies suggest that subtype selective activators of M1/M4 muscarinic acetylcholine receptors (mAChRs) may offer a novel approach for the treatment of psychotic symptoms associated with schizophrenia and Alzheimer’s disease. Previously developed muscarinic agonists have provided clinical data in support of this hypothesis but failed in clinical development due to a lack of true subtype specificity and adverse effects associated with activation of other mAChR subtypes. We now report characterization of a novel highly selective agonist for the M1 receptor with no agonist activity on any of the other mAChR subtypes, termed TBPB. Mutagenesis and molecular pharmacology studies revealed that TBPB activates M1 through an allosteric site rather than the orthosteric ACh binding site, which is likely critical for this unprecedented selectivity. Whole cell patch clamp recordings demonstrated that activation of M1 by TBPB potentiates NMDA receptor currents in hippocampal pyramidal cells, but does not alter excitatory or inhibitory synaptic transmission, responses thought to be mediated by M2 and M4. TBPB was efficacious in models predictive of antipsychotic-like activity in rats at doses that did not produce catalepsy or peripheral adverse effects of other mAChR agonists. Finally, TBPB had effects on the processing of the amyloid precursor protein towards the non-amyloidogenic pathway and decreased Aβ production in vitro. Taken together, these data suggest that selective activation of M1 may provide a novel approach for the treatment of symptoms associated with schizophrenia and Alzheimer’s disease.

Keywords: TBPB, M1 allosteric agonist, muscarinic acetylcholine receptors, schizophrenia, Alzheimer’s disease, mAChR

Muscarinic acetylcholine receptors (mAChRs) modulate multiple functions of the central nervous system, including cognition and motor control. The mAChRs are members of the family A G-protein coupled receptors (GPCRs) and include five subtypes, termed M1-M5 (Bonner et al., 1988; 1987). With the broad diversity of functions of mAChRs, development of subtype selective mAChR ligands has the potential to provide novel therapeutic approaches for multiple disease states, including symptoms associated with schizophrenia and Alzheimer’s disease (AD).

Previous studies suggest that selective activation of mAChRs may reduce psychotic symptoms and cognitive impairments in individuals suffering from AD and schizophrenia. For example, the M1/M4-preferring mAChR agonist xanomeline produced a robust reduction in behavioral disturbances in individuals with AD (Bodick et al., 1997a; 1997b) and the positive and negative symptoms in schizophrenic patients (Shekhar et al. 2001). Xanomeline also has robust efficacy in a number of animal models predictive of antipsychotic activity (Perry et al., 2001; Shannon et al., 2000). Unfortunately, the clinical effects of xanomeline and other muscarinic agents are associated with adverse side-effects due to nonspecific activation of peripheral M2 and M3 mAChRs, including gastrointestinal distress, bradycardia, and salivation (Bymaster et al., 1998). At present, the relative contributions of M1 and M4 mAChRs to the clinical effects of xanomeline or effects in associated animal models remain unknown.

Previous attempts to develop highly selective agonists of M1 have likely failed due to the high sequence conservation of the orthosteric binding site of the mAChRs. An alternate approach to orthosteric muscarinic agonists is targeting allosteric sites to activate the receptor by actions at a site removed from the highly conserved ACh binding site. In recent years, we (Shirey et al., 2008; Hemstapat et al., 2007; Rodriguez et al., 2005) and others (see Waelbroeck et al., 2003; Christopoulos, 2002 for reviews) have successfully developed allosteric modulators of a number of GPCRs that provide unprecedented selectivity for the intended receptor. Recently, Spalding et al. (2002; 2006) identified AC42 as a selective allosteric agonist at the M1 receptor. However, AC42 and analogs have limited potency and pharmacokinetic properties unsuitable for use in vivo.

We have discovered a novel series of selective allosteric agonists for the M1 receptor, represented by 1-(1’-2-methylbenzyl)-1,4’-bipiperidin-4-yl)-1H benzo[d]imidazol-2(3H)-one (TBPB) (Jones et al., 2006; Kinney et al., 2006), which is structurally unrelated to any previously reported orthosteric or allosteric mAChR agonists. We now report that TBPB is a highly selective, allosteric agonist of M1 with no agonist activity at the other mAChR subtypes. TBPB selectively potentiates the N-methyl-d-aspartate subtype of glutamate receptor (NMDAR) currents in hippocampal pyramidal cells. Interestingly, TBPB has similar effects as less selective mAChR agonists on amyloid processing in PC12 cells. Furthermore TBPB has robust effects in animal models predictive of antipsychotic-like activity that are similar to those previously reported for xanomeline or atypical antipsychotics. Taken together, with previous clinical studies, these data raise the exciting possibility that highly selective allosteric agonists of M1 may provide a novel therapeutic approach for the treatment of symptoms associated with schizophrenia and AD.

Materials and Methods

Cell Culture and Transfections

Chinese hamster ovary (CHO-K1) cells stably expressing rM1 were purchased from the American Type Culture Collection (ATCC) and cultured according to their suggested protocol. CHO cells stably expressing hM2, hM3, and hM5 were used and previously described (Levey et al. 1991); rM4 cDNA provided by T.I. Bonner (National Institutes of Health, Bethesda, MD) was used to stably transfect CHO-K1 cells purchased from the ATCC using Lipofectamine 2000. To make stable hM2 and rM4 cell lines for use in calcium mobilization assays, these cells also were stably transfected with a chimeric G protein (Gqi5) using Lipofectamine 2000. rM1, hM3, and hM5 cells were grown in Ham’s F-12 medium containing 10% heat-inactivated fetal bovine serum (FBS), 2 mM GlutaMax I, 20 mM HEPES, and 50μg/ml G418 sulfate. hM2-Gqi5 cells were grown in the same medium also containing 500 μg/ml Hygromycin B. Stable rM4-Gqi5 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% heat-inactivated FBS, 2 mM GlutaMax I, 1 mM sodium pyruvate, 0.1 mM nonessential amino acids, 20 mM HEPES, 400 μg/ml G418 sulfate and 500 μg/ml Hygromycin B. The rat M1 Y381A orthosteric mutant receptor cDNA was generated using the Quick-Change site directed mutagenesis kit (Stratagene, La Jolla, CA) and verified by sequencing. CHO-K1 cells were stably transfected with this cDNA using Lipofectamine 2000 and screened for expression based on calcium mobilization in response to the allosteric M1 agonist, N-Desmethylclozapine (N-DMC).

Calcium mobilization assays

For measurement of agonist-evoked increases in intracellular calcium, CHO-K1 cells stably expressing muscarinic receptors were plated in 20μL of growth medium lacking antibiotic at 1X104 (rM1, hM3, hM5) or 2.5X104 cells per well (rM1 Y381A, hM2,rM4) in Greiner 384-well black-walled, TC-treated, clear bottom plates (VWR Scientific, Suwanee, GA). Cells were grown overnight at 37°C/5% CO2. The next day, medium was removed from the cells and they were incubated with 20μl of 2μM Fluo-4AM diluted in assay buffer (Hank’s Balanced Salt Solution (HBSS) (Invitrogen, Carlsbad, CA) supplemented with 20mM HEPES and 2.5mM probenecid, pH 7.4) for 1 hr at 37°C. Dye was removed and replaced with 40μl of assay buffer. Agonists were diluted into assay buffer at a 5X concentration and applied to cells using the automated system at 11 sec into the 120 sec protocol. Calcium flux was measured over time as an increase in fluorescence (fold over basal) using the Hamamatsu Functional Drug Screening System (FDSS-6000). Data were collected at 1 Hz.

Schild Analysis

Schild Analyses were performed at 25°C on a FLEXstation II (Molecular Devices, Sunnyvale, CA) by measuring calcium mobilization in response to agonist (CCh or TBPB) stimulation in the presence of various fixed concentrations of the antagonist, atropine. CHO-K1 cells stably expressing rM1 were plated at 5x104 cells per well in 100μL growth medium in Costar 96-well cell culture plates (Corning Inc., Corning, NY). The next day, cells were loaded with 2μM calcium indicator dye, Fluo-4 AM (Invitrogen, Carlsbad, CA) for 45 min at 37°C. Dye was removed and replaced with 45μL of assay buffer, pH 7.4 (1X HBSS (Hanks’ Balanced Salt Solution), supplemented with 20 mM HEPES and 2.5 mM probenecid). Immediately after dye loading, cells were preincubated for 15 min with 45μL of varying fixed concentrations of atropine prepared at a 2X concentration prior to placing the assay plate in the Flexstation II for agonist addition. Agonist concentration response curves were prepared in assay buffer at a 10X concentration. The Flexstation II was programmed to add 10μL of 10X agonist at 19 sec into the 45 second protocol, with data being read every 1.52 seconds (Excitation at 488nm/Emission at 525nm). The signal amplitude was first normalized to baseline and then as a percentage of the maximal response to acetylcholine.

APP and Aβ assays

Cell culture and drug treatments

PC12 N21 cells (a gift from Dr. Richard Burry, Ohio State University, Columbus, OH) were maintained in DMEM containing 10% horse serum, 5% fetal clone, 100 U/mL penicillin, and 100 μg/mL streptomycin at 37°C and 5% CO2. For amyloid processing experiments, cells were plated at 50,000 cells/cm2 in 60 mm culture dishes 4 days before the experiment. On the day of the experiment, the medium was replaced with 1.5 mL serum free DMEM containing the vehicle (DMSO) or the indicated drugs. Cells were incubated at 37°C for eight hours, after which 1 mL of conditioned medium was collected and centrifuged at 17,000 x g for 5 minutes to remove any cellular debris. Cells were placed on ice, rinsed with cold phosphate-buffered saline, and harvested in phosphate-buffered saline containing protease inhibitor cocktail (Roche).

Lentivirus transduction

A humanized amyloid precursor protein sequence bearing the Swedish mutation (KM570/571/NL) was cloned in place of GFP in the FUGW backbone. High titer virus (~1 x 109 infectious particles per mL) was used to transduce PC12 N21 cells. The APP-infected cells were subsequently infected with a lentivirus in which GFP was replaced by the human M1 muscarinic receptor sequence.


Aβ40 levels were measured using the hAmyloid β40 ELISA (HS) kit (The Genetics Company, Schlieren, Switzerland) according to the manufacturer’s instructions. Plates were read at 450 nm on a Spectra Max Plus plate reader (Molecular Devices, Sunnyvale, CA).


Primary antibodies included: 6E10 (APP Aβ domain, Signet, Dedham, MA), C8 (APP C terminus, a gift from Dr. Dennis Selkoe, Center for Neurologic Diseases, Harvard Medical School, Boston, MA).

Western blotting

50 μg protein from cell extracts or 15 μL of conditioned medium was prepared in Laemmli sample buffer, separated by SDS-PAGE, and transferred to Immobilon-P membranes (Millipore, Bedford, MA). Membranes were blocked at room temperature for 30 minutes and incubated with primary antibodies overnight at 4°C. Blots were rinsed, incubated with fluorophore-conjugated secondary antibodies (Molecular Probes, Eugene, OR and Rockland, Gilbertsville, PA) for one hour at room temperature. Blots were imaged and band intensities were quantified using an Odyssey Image Station (LI-COR, Lincoln, NE).

Hippocampal Slice Electrophysiology

Transverse hippocampal slices were prepared from Sprague Dawley rats (postnatal day 21-25). In brief, rats were anesthetized with isoflurane and decapitated. The brain was rapidly removed from the skull and submerged in ice-cold modified artificial cerebrospinal fluid (ACSF), which was oxygenated with 95% O2 /5% CO2 and composed of (in mM) 230 sucrose, 2.5 KCl, 0.5 CaCl2, 10 MgSO4, 1.25 NaH2PO4, 26 NaHCO3, and 10 D-glucose. The brain was then blocked in the horizontal plane, glued to the stage of a vibratome (Vibratome, St. Louis, MO, USA) that was filled with ice-cold modified ACSF, and cut at a thickness of 290 μm. Slices were then incubated in oxygenated normal ACSF (in mM, 126 NaCl, 2.5 KCl, 3 CaCl2, 1 MgSO4, 1.25 NaH2PO4, 26 NaHCO3, and 10 D-glucose) at 31-32°C for 1 h and then maintained at room temperature until being transferred individually to a fully submerged recording chamber, which was continuously perfused with oxygenated ACSF at ~30°C.

Whole-cell recordings were made from visually identified hippocampal CA1 pyramidal neuron soma under an Olympus BX50WI upright microscope (Olympus, Lake Success, NY, USA). A low-power objective (4x) was used to identify CA1 region of the hippocampus, and a 40x water immersion objective coupled with Hoffman optics and video system was used to visualize individual pyramidal cells. A MultiClamp amplifier (Molecular devices, Union City, CA) was used for voltage-clamp recordings. Patch pipettes (3-5 MΩ) were prepared from borosilicate glass (World Precision Instrument, Sarasota, FL, USA) using a Narashige vertical patch pipette puller (Narashige, Japan) and filled with the pipette solution containing (in mM) 61.5 K-gluconate, 65 CsCl, 3.5KCl, 1 MgCl2, 0.5 CaCl2, 10 HEPES, 5 EGTA, 2 Mg-ATP, and 0.2 Na-GTP. The pH of the pipette solution was adjusted to 7.3 with 1 M KOH, and osmolarity was adjusted to ~295 mOsm. NMDA receptor mediated currents were induced by pressure ejection of 0.5 mM NMDA to the soma of the recorded cell using a Picospritzer II (General Valve, Fairfield, NJ, USA). This experiment was carried out in the presence of tetrodotoxin (1 μM) to block voltage-gated sodium channels and the cell was typically voltage-clamped at -60 mV. EPSCs or IPSCs were evoked in CA1 pyramidal cells by electrical stimulation of Schaffer collaterals using a concentric bipolar stimulating electrode (FHC, Bowdoinham, ME, USA) in the presence of the GABAA receptor antagonist bicuculline (20 μM) or ionotropic glutamate receptor antagonists CNQX (10 μM) and AP-5 (50 μM), respectively. In these experiment, cells were typically voltage clamped at -60 ~ -70 mV. All drugs were bath applied. Data analysis was performed using a PC computer equipped with pClamp data acquisition and analysis software (Molecular Devices, Union City, CA). Data were presented as percentage of the control value or percentage potentiation. The percentage potentiation was defined by [I(max)/I(control)-1]x100, where I(control) was the average amplitude of NMDA receptor currents of 4 trials immediately before application of TBPB and I(max) is the maximum current amplitude during TBPB application. TBPB was dissolved in DMSO and then diluted to the appropriate concentration using ACSF.

Fos immunohistochemistry

Two hours after drug treatment rats were deeply anaesthetized with isoflurane and transcardially perfused with phosphate-buffered saline followed by 4% paraformaldehyde. Brains were postfixed overnight, cryoprotected in 30% sucrose, and coronal sections through the forebrain were cut at 42 μm on a freezing microtome. For the demonstration of Fos-like immunoreactivity (Fos-li) free-floating sections were incubated in a goat anti-Fos antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA; 1:3000) and processed following our previously described methods (Bubser et al., 2002; Young et al., 1999).

Amphetamine-induced hyperlocomotion


All behavioral studies were conducted using male Harlan Sprague-Dawley rats, weighing 275 to 300 grams. Subjects were housed in groups in a large colony room under a 12-h light/dark cycle (lights on at 6:00 a.m.) with food and water provided ad libitum. Test sessions were performed between 6:00 a.m. and 6:00 p.m. All dose groups consisted of 6 to 12 rats. All experiments were conducted in accordance with the National Institutes of Health regulations of animal care covered in Principles of Laboratory Animal Care (National Institutes of Health publication 85-23, revised 1985) and were approved by the Institutional Animal Care and Use Committee.


Amphetamine-induced hyperlocomotion studies were conducted in open field chambers (27 x 27 x 20 cm) (Hamilton Kinder Inc, San Diego, CA) equipped with 16 horizontal (x- and y-axes) infrared photobeams. Changes in locomotor activity were measured as the number of photobeam breaks and were recorded with a Pentium I computer equipped with a mouse activity monitoring system software (Hamilton Kinder Inc).


Male Harlan Sprague-Dawley rats were habituated in locomotor activity test chambers for thirty minutes and then injected sc with vehicle or a dose of TBPB. At sixty minutes, all rats were injected sc with 1 mg/kg amphetamine and then tested for an additional sixty minutes. Data are expressed as changes in ambulation, total number of beam breaks per 5 min bins. Each point represents the mean value for 8-12 rats per dose group. The vertical lines represent ±S.E.M. values.

In a separate experiment, the effects of TBPB (30, 56.6 and 100 mg/kg sc) on locomotor activity when administered alone were assessed in nonhabituated naive rats. In this experiment, rats were pretreated with veh or dose of TBPB for 30 minutes, then placed into the open field chambers and changes in locomotor activity were assessed for 60 min. Data are expressed as changes in ambulation, total number of beam breaks per 5 min bins. Each point represents the mean value for 8-12 rats per dose group. The vertical lines represent ±S.E.M. values.

Catalepsy Test

Male Harlan Sprague-Dawley rats were injected sc with vehicle or a dose of TBPB, haloperidol, or clozapine and then tested at time points for up to 4 h in catalepsy test. Catalepsy was evaluated by placing both forepaws on a horizontal rod 6 cm above the bench top and recording the time until the rat returned both forepaws to the floor of the test cage (Moore et al., 1992). The data are expressed as the immobility time; i.e., the number of seconds until the rats returned both feet to the floor of the test cage. Each point represents the mean value for 6 rats per dose group.

Modified Irwin Test Battery Procedure

Changes in the Modified Irwin Neurological Battery as previously reported in the literature (Irwin, 1968) were evaluated using a rating scale from 0 to 2 with 0=no effect, 1=modest effects, 2=robust effect. All rats were pretreated with vehicle, dose of oxotremorine (0.03-0.3 mg/kg sc), TBPB (30-100 mg/kg sc), then tested in the Irwin battery at 30 min posttreatment.

D2 occupancy studies using PET

Male Sprague-Dawley rats, weighing 275-300 grams, were habituated for 5 min in a rat tail veining restraint cylinder for three consecutive days, prior to the first and second days of testing. On the first day, rats were injected with vehicle sc 30 min prior to a tail-vein injection of ~350 μCi (range: 250-450 μCi) of [18F]fallypride using a catheter. The catheter was then removed and measured for residual activity. After injection rats were returned to their cages for a 60 min [18F]fallypride uptake period with free access to food and water. Rats were then anesthetized under 1.5% isoflurane and imaged for 60 min in the microPET Focus 220 (Siemens, Knoxville TN) (Tantawy et al., 2007). One week later, the same rats were pretreated with a dose of TBPB (100mg/kg sc) 30 min prior, or with haloperidol (0.1 or 1.0 mg/kg sc) 60 min prior to injection with [18F]fallypride. After 60 min, rats were anesthetized under 1.5% isoflurane and imaged for 60 min in the microPET. Scatter and attenuation corrections were applied for all microPET scans for all groups. Attenuation maps for these corrections were created from a transmission image acquired using a 57Co source. The data were reconstructed on a 128 x 128 x 95 grid at a pixel size of 0.095 cm and slice thickness of 0.080 cm. Dynamic images were reconstructed using an OSEM2D algorithm with a sequence of five 60 second frames (5x60 s), 2x300 s, 2x600 s, 2x1200 s, 1x600 s, 6x300 s, 2x600 s, and 3x1200 s. Three dimensional regions of interest (ROI’s) were drawn around the cerebellum, left striatum and right striatum using AsiPro software. Time-activity curves from these ROIs were used as input to the Logan plot analysis from which estimates of binding potential were obtained.

Statistical Analysis

For the calcium mobilization assay, all data were normalized to percentage CCh or TBPB maximum defined by 10 μM of CCh or TBPB for each cell line, respectively. Data analysis was performed using GraphPad Prism 4.0 software (GraphPad Software, Inc., San Diego, CA). For the Fos immunoreactivity studies, Fos-li cells were charted and their density was quantified using NeuroLucida software (MicroBrightField Inc; Williston, VT). Fos expression was analyzed in the prelimbic area of the prefrontal cortex (in a column extending from pial surface to forceps minor) and in a box (200 x 300 μm) placed in the medial and lateral striatum and core and shell subregions of the nucleus accumbens. All data are presented as means (± S.E.M.) of the number of Fos-li neurons per mm2. Behavioral data were analyzed by using a one-way ANOVA with treatment as the main factor. When a statistically significant effect was found, post hoc analysis was carried out by using a Dunnett’s test. Electrophysiological, Fos, and PET data were analyzed by using a one- or two-tailed Student t test. For the PET studies, changes in binding potential of [18F]fallypride for D2 in rat striatum (caudate-putamen), a region with high D2 dopamine receptors expression levels, were calculated from distribution volume ratio estimates (DVR = BP + 1) using a Logan plot reference tissue model with the cerebellum as the reference region. Percent D2 dopamine receptor occupancy was calculated as (1-[Binding Potentialdrug/Binding Potentialcontrol]) x 100.


Acetylcholine chloride (ACh), carbamylcholine chloride (carbachol, CCh), probenecid, and dimethyl sulfoxide (DMSO), were purchased from Sigma-Aldrich (St. Louis, MO). Fluo-4 AM calcium-sensitive dye and all tissue culture reagents were purchased from Invitrogen (Carlsbad, CA). Greiner optical bottom TC-treated 384-well culture plates were obtained from VWR Scientific Products (Suwanee, GA). [18F]Fallypride, ((S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3’-18F-[18F]fluoropropyl)-2,3-dimethoxybenzamide) was carried out in the computer-controlled processor unit of the CTI RDS-112 cyclotron prepared using modifications of our previously reported methods (Kessler 1993; Ansari 2006) in specific activities of 2000 >2,000 Ci/mmol. Fluorine-18 radioactivity was counted in a Capintec dose calibrator, and low-level counting was carried out in a well counter (Auto-Gamma 5000, Packard Instruments Co.). Autoradiograms were read and analyzed using the Cyclone Storage Phosphor System (Packard Instruments Co.). Amphetamine hydrochloride, oxotremorine sesquifumarate, haloperidol (Sigma-Aldrich, St. Louis, MO), and TBPB (synthesized in-house by Lindsley laboratory), were used.


TBPB is a Selective, Allosteric Agonist of the M1 Receptor in Recombinant Systems

Activation of M1 was assessed by measuring agonist-induced increases in intracellular calcium in CHO-K1 cells expressing wildtype (wt) rat M1 with a functional fluorescence-based calcium assay. Both the orthosteric agonist carbachol (CCh) and TBPB produced robust increases in intracellular calcium in cells expressing wt rM1 (Fig 1). The response to TBPB was 77.3±3.4% of the maximal response to CCh with an EC50 of 160±21 nM. The response to TBPB was not observed in untransfected parental CHO-K1 cells and was blocked by the mAChR antagonist atropine (data not shown), demonstrating that this is an M1-mediated response.

Figure 1
TBPB is an allosteric agonist of M1 receptors in recombinant systems

Allosteric agonists of M1 can be differentiated from orthosteric agonists by their ability to activate a form of the receptor in which there is a single point mutation in the orthosteric site that renders the receptor insensitive to acetylcholine or orthosteric agonists (Spalding et al., 2002; 2006; Jones et al., 2006; Kinney et al., 2006). To determine whether TBPB is likely acting as an allosteric agonist of M1, we evaluated the effects of TBPB in a cell line stably expressing rM1 receptor containing this mutation (tyrosine 381 to alanine-Y381A) in the orthosteric binding site. CCh was without effect at rM1 Y381A at concentrations that fully activated the wt rM1 receptor (Fig. 2A). In contrast, increasing concentrations of TBPB activated the rM1 Y381A mAChR mutant with an EC50 similar to the wt rM1 mAChR (Fig. 2B), indicating that TBPB is not acting at a site identical to the orthosteric binding site.

Figure 2
TBPB activity is consistent with action as an allosteric agonist in vitro

To further evaluate the effects of TBPB at the orthosteric binding site of M1, we evaluated the effects of TBPB on activation of M1 in the presence of increasing concentrations of the nonselective orthosteric mAChR antagonist atropine. As seen in Fig. 3A, increasing concentrations of atropine (1-10 nM) competitively antagonized the action of the orthosteric agonist CCh at the M1 receptor. In contrast, increasing concentrations of atropine (0.3-3.0 nM) produced a robust decrease in the maximum effect of TBPB at M1 consistent with a noncompetitive interaction (Fig. 3B). Taken together, the finding that a competitive orthosteric antagonist blocks the effect of TBPB in a noncompetitive manner along with the lack of effect of the mutation of the orthosteric site on TBPB action provides strong support for the hypothesis that TBPB is an allosteric agonist.

Figure 3
Atropine Noncompetitively Antagonizes TBPB at M1

While recent studies have attempted to develop M1-selective orthosteric agonists, these compounds fail to exhibit true subtype selectivity due to the high conservation of the ACh binding site across the five mAChR subtypes. However, allosteric modulators often provide unprecedented selectivity relative to traditional orthosteric ligands. To determine whether TBPB exhibits selectivity for M1 relative to M2 – M5, we determined effects of this compound on all members of the mAChR subfamily. For comparison, we also determined the effects of one of the more recently developed orthosteric agonists, AF267B, which has been purported to provide greater selectivity than previous orthosteric mAChR agonists (Caccamo et al. 2006). The effects of AF267B and TBPB were determined in cell lines expressing rM1, hM2-Gqi5, hM3, rM4-Gqi5, or hM5. While AF267B did provide greater selectivity than most other orthosteric agonists, these studies revealed that this compound lacks true selectivity and has robust agonist activity at M1, M3 and M5 receptors (Fig. 4A). In contrast, TBPB was highly selective for M1 and had no agonist activity at any of the other mAChR subtypes (M2-M5) at concentrations up to 10μM (Fig. 4B).

Figure 4
TBPB is a highly selective agonist for the M1 receptor

TBPB increases non-amyloidogenic APP processing

One of the most exciting effects of AF267B reported in previous studies was the finding that this compound has actions that may produce disease modifying effects in AD. Thus, this compound decreased amyloidogenic processing of the amyloid precursor protein (APP) and decreased development of amyloid pathology in 3xTg-AD mice (Caccamo et al. 2006). While this finding was postulated to be mediated by M1, the lack of selectivity of AF267B made it impossible to determine whether selective activation of M1 would have a beneficial effect on APP processing. Thus, in order to clarify the potential role of M1 in modulation of amyloid pathology, we investigated the effects of TBPB on the processing of the amyloid precursor protein (APP) in vitro in PC12 cells.

Amyloid-β (Aβ) peptide is generated by the proteolysis of APP, which can be processed through either an amyloidogenic or non-amyloidogenic pathway. In the amyloidogenic pathway, APP is sequentially cleaved by β-secretase and then γ-secretase, resulting in the release of the Aβ peptide. In the non-amyloidogenic pathway, APP is cleaved within the Aβ domain by α-secretase, releasing APP, and precluding the generation of Aβ (Hardy et al., 2002). In the present study, PC12 cells over-expressing human sequence APP and M1 were treated with vehicle, CCh, or TBPB, and the conditioned media were analyzed for APP derivatives. Treatment with 1 μM TBPB increased the shedding of APP, the ectodomain released by α-secretase cleavage, by 58% as compared to vehicle-treated cells (Fig. 5 A, B). The magnitude of the TBPB response was comparable to that of the CCh positive control and was blocked by atropine. It should be noted that the antibody used to detect APPs in these experiments recognizes an epitope contained within APP but not APP, indicating that the shedding of APP is specifically increased. Consistent with these data, TBPB also increased the production of CTFα (also called C83), the carboxy-terminal fragment of APP derived from alpha-secretase cleavage, in an atropine-sensitive manner (Fig. 5 A, C). We also analyzed conditioned media from these cells for Aβ40 by ELISA (Fig. 5D). In TBPB treated cells, Aβ40 levels were reduced to 61% of the vehicle control and this effect was blocked by atropine. Together, these results are consistent with the hypothesis that selective activation of M1 could regulate APP processing and indicate that activation of M1 with TBPB shifts the processing of APP toward the non-amyloidogenic pathway, resulting in increased shedding of APP and decreased production of Aβ.

Figure 5
TBPB regulates non-amyloidogenic APP processing

TBPB Potentiates NMDA Receptor currents in CA1 hippocampal pyramidal cells

A prominent effect of activation of mAChRs in the hippocampus and other brain regions is potentiation of currents through the NMDA subtype of the glutamate receptor. Potentiation of NMDAR currents is thought to be important for both cognition and psychosis and has been postulated to play a role in the antipsychotic effects of mAChR agonists (Marino et al., 2002; Coyle et al., 2002). Previous studies suggest that potentiation of NMDAR currents in hippocampal pyramidal cells by nonselective mAChR agonists is mediated by M1 (Marino et al., 1998). In contrast, presynaptic mAChRs involved in regulating synaptic transmission are not likely to involve M1 activation. We recently showed that mAChR inhibition of EPSCs at the Schaffer collateral-CA1 synapse is likely mediated by M4 (Shirey et al., 2008), and M2 has been postulated to play a major role in inhibiting transmission at inhibitory synapses in the hippocampus (Rouse et al., 1999). Given the possible importance of potentiation of NMDAR currents to the antipsychotic effects of mAChR agonists, it is important to determine whether TBPB mimics this effect of less selective mAChR agonists. If TBPB acts as an M1 agonist in native systems and retains its selectivity for M1 relative to other mAChR subtypes, then it should potentiate NMDAR currents, but may have no effect on either inhibitory or excitatory synaptic transmission. Thus, we determined the effects of TBPB in hippocampal pyramidal cells using whole cell patch clamp recording techniques. Pressure ejection of NMDA (0.5 mM) produced a stable inward current in CA1 pyramidal cells voltage-clamped at -60 mV. Bath application of TBPB (3 μM) produced an increase in the peak amplitude of NMDA-evoked currents in CA1 pyramidal cells (Fig. 6A and 6B). The increased amplitude of NMDAR currents induced by TBPB peaked at 135.1±5.8% of baseline approximately 8 min after initial application of TBPB (n = 6). To confirm that the observed effects of TBPB were mediated by activation of mAChRs, the muscarinic antagonist atropine was applied to the bath prior to TBPB application. Atropine (1 μM) completely blocked the ability of TBPB (3 μM) to potentiate NMDA-evoked currents with a peak potentiation of TBPB-mediated effects of 5.1±5.8% in combination with atropine (n = 5) as compared to a peak potentiation of 40.4±6.4% observed with TBPB alone (p < 0.003) (data not shown). In contrast, TBPB had no effect on the amplitudes of evoked EPSCs or IPSCs in hippocampal pyramidal cells (Fig 7). Activation of mAChRs with CCh induced robust inhibition of both EPSC and IPSC amplitudes, indicating that the previously reported mAChR regulation of inhibitory and excitatory synaptic transmission in these cells was intact (Fig. 7A and 7B).

Figure 6
TBPB potentiates NMDA receptor currents in CA1 pyramidal cells
Figure 7
TBPB had no effects on evoked EPSCs and IPSCs in CA1 hippocampal pyramidal cells

TBPB produces antipsychotic-like effects in rodent models predictive of antipsychotic-like activity

Discovery of a highly selective allosteric agonist of M1 with activity in native systems provides a novel tool to allow us to determine whether a selective agonist of M1 can mimic the effects of the M1/M4 preferring mAChR agonist xanomeline in animal models used to predict potential antipsychotic-like activity, including changes in Fos-like immunoreactivity (Fos-li) that are known to be characteristic of marketed antipsychotic agents and reversal of psychostimulant-induced behaviors.

Previous studies have demonstrated that a range of antipsychotic drugs induce changes in Fos-li in specific brain nuclei thought to be related to their clinical efficacy (see Deutch et al., 1994; Fibiger et al., 1994 for reviews). In particular, clozapine and other atypical antipsychotics induce preferential increases in Fos-li in the nucleus accumbens (NAS) and prefrontal cortex (PFC), but not in the dorsolateral striatum (STR), while typical antipsychotics, such as the selective D2 dopamine receptor antagonist haloperidol, increase Fos expression in the STR and NAS, but not the PFC. Interestingly, the pattern of Fos-li induced by the mAChR agonist xanomeline is virtually identical to that induced by atypical antipsychotics (Perry et al., 2001). However, the specific mAChR subtype responsible for this effect of xanomeline is not known. Here we evaluated the ability of TBPB to induce Fos-li in three rat brain regions, specifically the PFC, NAS and STR. TBPB (100 mg/kg sc) selectively increased the number of Fos-li cells in both the PFC (t10 = 3.88, p < 0.01) and NAS (shell [t10 = 4.94, p < 0.001] and core [t10 = 1.32, p > 0.05]), but not in the dorsolateral STR (see Fig. 8 and Table 1). These effects of TBPB on Fos expression indicate that selective activation of M1 receptors is sufficient to induce changes in Fos-li comparable to previously reported effects of xanomeline.

Figure 8
TBPB elicits Fos expression in the rat forebrain
Table 1
The Effects of TBPB on induction of Fos expression in rat brain regions. Data are expressed as means ± S.E.M.

Both typical and atypical antipsychotic drugs reduce amphetamine-induced hyperlocomotion, an effect thought to be predictive of their antipsychotic efficacy (see Geyer et al., 2003 for review). As with changes in Fos expression, xanomeline also exhibits effects in preclinical models comparable to those observed with the atypical antipsychotic clozapine. Again, this effect is likely to be relevant for the clinical efficacy of xanomeline in schizophrenia patients, but the mAChR subtypes involved in mediating this effect are unclear. Thus, we determined whether selective activation of M1 by TBPB could mimic the effects of antipsychotics and xanomeline in reversing amphetamine-induced hyperlocomotion in rats. TBPB produced a robust, dose-related inhibition of amphetamine-induced hyperlocomotion, which was significant after doses of 10, 30, and 56.6 mg/kg sc (Fig. 9A). TBPB had no effect on general locomotor output across the dose range tested (30-100 mg/kg sc) when administered alone (Fig.9B).

Figure 9
TBPB produces a robust inhibition of amphetamine-induced hyperlocomotion

TBPB produces antipsychotic-like effects at doses that do not produce catalepsy or side-effects associated with activation of peripheral M2 and M3 mAChRs

Typical antipsychotics, such as the selective D2 dopamine receptor antagonist haloperidol, are associated with dose-limiting motor impairments clinically due to excessive antagonism of D2 dopamine receptors (Reynolds et al., 2004). A potential advantage of M1 agonists could be the ability to produce efficacy in schizophrenia patients without inducing the adverse effects of existing antipsychotic therapies. Thus, we evaluated the ability of TBPB to produce catalepsy, a preclinical model of motor impairment. TBPB (30-100 mg/kg sc) did not induce catalepsy up to 4 h (Fig. 10A, left panel). Our data with TBPB are consistent with the lack of catalepsy observed with xanomeline (Shannon et al., 2000). Similarly, clozapine also failed to produce catalepsy (Fig. 10A, right panel). In contrast, haloperidol produced dose-and time-related increases in catalepsy (Fig. 10A, middle panel). Thus, TBPB produced antipsychotic-like effects over a dose range that did not produce catalepsy. Our data suggest that TBPB does not produce robust functional antagonism of striatal dopaminergic function over the dose range tested and that selective activation of the M1 mAChR may provide a novel antipsychotic approach without potential dose-limiting side effects, including the induction of extrapyramidal side effects.

Figure 10
TBPB produces antipsychotic-like effects at doses that do not produce catalepsy or induction of salivation

Clinical studies using direct acting mAChR agonists, including xanomeline, and cholinesterase inhibitors, have reported substantial dose-limiting adverse effects due to nonspecific activation of the mAChR subtypes, most notably peripheral M2 and M3 (Bodick, 1997a; 1997b; Felder, 2001). While TBPB is highly selective for the M1 relative to the other mAChRs in vitro, it was important to evaluate the degree of selectivity of the actions of TBPB in vivo. Thus, the potential of TBPB to produce peripheral M2-and M3-mediated effects, including salivation, lacrimation, diarrhea, and changes in respiratory rate, was assessed using a modified Irwin neurological test battery with the nonselective mAChR agonist oxotremorine as a comparator. Oxotremorine produced a robust dose-dependent induction of salivation (Fig. 10B). In contrast, TBPB did not produce any salivation across the dose range of 30-100 mg/kg (Fig. 10B). In addition, oxotremorine produced a dose-dependent induction of lacrimation, diarrhea, piloerection, and decreased respiratory rate and core body temperature, while TBPB did not produce these effects, with the exception of a slight decrease in core body temperature at 100 mg/kg (data not shown). Thus, TBPB produced antipsychotic-like activity at doses that did not produce adverse effects associated with activation of peripheral M2 and M3 mAChRs in vivo.

TBPB does not occupy central D2 dopamine receptors at doses that produce antipsychotic-like effects

Our initial in vivo characterization of TBPB indicates a profile of effects in preclinical models predictive of antipsychotic-like activity similar to those observed with xanomeline and the atypical antipsychotic clozapine. Since the antipsychotic effects of currently marketed antipsychotic agents is thought to involve antagonism of D2 dopamine receptors (Reynolds et al., 2004), we evaluated the affinity of TBPB at D2 receptors using the NIMH Psychoactive Drug Screening Program (, accession number 3156). TBPB had relatively low affinity for D2 (Ki =1.4 μM) receptors. While this affinity is significantly lower than the potency of TBPB at activating M1, it is well established that antagonism of D2 dopamine receptors can produce antipsychotic-like effects in animal models similar to the effects observed with TBPB (see Geyer et al., 2003 for review). The present studies of the effects of TBPB on Fos-li and measures of catalepsy suggest that TBPB does not act by blockade of D2. However, to definitively assess the possibility that the doses of TBPB used in these studies occupy D2 dopamine receptors, we determined the occupancy of central D2 dopamine receptors by TBPB. D2 occupancy was evaluated by measuring displacement of [18F]fallypride, a high-affinity dopamine D2 receptor radioligand, using positron emission tomography. This radioligand has been used in several studies for the evaluation of D2 receptor occupancy by various antipsychotic drugs, including clozapine, risperidone, and haloperidol, in rodents, nonhuman primates, and humans (Mukherjee et al., 2001; Kessler et al., 2006; Kessler et al., 2005). As a positive control, we also determined the occupancy by haloperidol of central D2 receptors after doses of 0.1 and 1.0 mg/kg; doses that produce moderate to full reversal of amphetamine-induced hyperlocomotion (Stanhope et al. 2001). Using a within subject design, control binding potentials of [18F]fallypride were first assessed after vehicle alone, followed one week later by measurement of binding potentials of [18F]fallypride in the presence of a dose of TBPB or haloperidol. Changes in binding potential of [18F]fallypride for D2 in rat striatum (caudate-putamen), a region with high D2 dopamine receptor expression levels, were calculated from distribution volume ratio estimates using a Logan plot (Mukherjee et al., 2001;Logan et al., 1996). TBPB produced no change in the binding potential of [18F]fallypride in rat striatum (Fig. 11A) as compared with vehicle treatment (Fig. 11D). In contrast, haloperidol produced a robust dose-related decrease in the binding potentials of [18F]fallypride in rat striatum after treatment with 0.1 (Fig. 11E) and 1.0 mg/kg (Fig. 11F) of haloperidol as compared with the vehicle treatment (Table 2, Fig. 11B and 11C). These findings indicate that TBPB does not occupy D2 receptors at doses that produce antipsychotic-like effects in vivo.

Figure 11
TBPB does not occupy central D2 dopamine receptors at doses that produce antipsychotic-like effects
Table 2
TBPB does not occupy central D2 dopamine receptors at a dose that produces antipsychotic activity in vivo.


Discovery and characterization of TBPB as a highly selective allosteric agonist of the M1 mAChR provides a major advance in further demonstrating the feasibility of achieving high selectivity for M1 mAChRs by targeting allosteric sites. These studies provide exciting new data revealing that selective activation of M1 provides efficacy in animal models that predict antipsychotic efficacy and that are responsive to the M1/M4-preferring mAChR agonist xanomeline, which has demonstrated antipsychotic efficacy in the clinic. In addition, the selective activation of M1 by TBPB also results in enhanced processing of APP through the non-amyloidogenic pathway, which may constitute a potential disease modifying approach for AD. Based on a (1-(1’-substituted)-1,4’-bipiperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one scaffold, TBPB is structurally and chemically distinct from other mAChR agonists (Kinney et al., 2006) and provides higher selectivity for M1 relative to other mAChR subtypes than xanomeline or other published orthosteric mAChR agonists.

Our findings provide strong evidence that the antipsychotic-like effects of xanomeline in animal models can be mimicked by selective activation of M1 and raise the exciting possibility that selective allosteric activators of M1 may provide antipsychotic efficacy in patients. Interestingly, we and others recently reported that N-desmethylclozapine, a major metabolite of the atypical antipsychotic clozapine, preferentially activates M1 mAChRs (Sur et al., 2003; Weiner et al., 2004). Like TBPB, N-desmethylclozapine is an allosteric agonist of M1 and fully activates the M1 (Y381A) mutant (Sur et al., 2003). Interestingly, Weiner et al. (2004) found that the plasma levels of N-desmethylclozapine are more closely correlated with clinical response to clozapine than are plasma levels of the parent compound. While this does not establish M1 activation as contributing to the unique efficacy profile of clozapine, it does raise this possibility.

While the present studies point to M1 as a major contributor to the effects of muscarinic agonists in the models predictive of antipsychotic activity, it is important to mention that these data do not rule out a possible role for M4. As discussed above, xanomeline has similar potencies as an agonist of M1 and M4. Recent findings with both M1 and M4 knockout mice support possible roles for each of these receptor subtypes (Anagnostaras et al., 2003; Zhang et al. 2002; Gerber et al., 2001) in the effects observed with xanomeline. For example, Zhang et al. (2002) reported that oxotremorine-stimulated release of striatal [3H]dopamine was totally abolished in M4 mAChR KO mice, indicating that M4 receptors play a key role in promoting mAChR-dependent increases in striatal dopamine output. Thus, in future studies, it will be critical to further evaluate the relative effects of agents that are selective for M1 and M4, as well as combined administration of M1 and M4 agonists in animal models that predict antipsychotic efficacy, negative symptoms and relevant aspects of cognitive function.

The mechanisms by which selective activation of M1 may have antipsychotic efficacy are not entirely clear. However, one possible mechanism that could contribute to the effects of TBPB may be through the potentiation of NMDAR currents in the hippocampus and other forebrain regions. Activation of NMDARs is critical in the regulation of hippocampal and cortical function and is thought to be important for the cognition-enhancing effects of mAChR activation. In addition, the NMDA receptor may play an important role in regulation of circuits that are disrupted in schizophrenia and other psychotic disorders (See Marino et al., 2002; Coyle et al., 2002 for recent reviews). Thus, a large number of clinical and animal studies have led to the hypothesis that potentiation of NMDA receptor currents in these regions could have an antipsychotic action. The present finding that selective activation of M1 by TBPB potentiates NMDAR currents in CA1 hippocampal cells provides one possible mechanism by which selective allosteric M1 mAChR agonists could have therapeutic utility in psychiatric and neurological disorders in which hippocampal or NMDAR function is thought to be compromised.

Our findings with TBPB also provide critical support for the hypothesis that M1 activation has effects that could prove beneficial to patients suffering from AD. AD is the most common neurodegenerative disorder in elderly populations, affecting 8 million people worldwide, resulting in progressive memory loss and severe cognitive dysfunction due in large part to the impaired function of the forebrain cholinergic system (Sorbera et al., 2007). Clinical studies using both direct and indirect-acting muscarinic agonists have reported improvements in the behavioral disturbances associated with AD (Cummings et al., 2001; Bodick et al., 1997); although dose-limiting side effects resulting from the activation of peripheral mAChRs, have rendered these nonselective mAChR agonists unsuitable for clinical treatment. Moreover, the muscarinic agonist AF102B, an analog of AF267B, decreased the production of the amyloidogenic peptide Aβ42 in the cerebral spinal fluid of AD patients, suggesting that mAChR activation may have potential to be disease modifying as well as providing palliative cognitive therapy (Tarsy et al., 2006; Eglen et al., 1999). Preclinical studies with AF267B in 3xTg-AD mice provide further support for a disease modifying role of mAChR activation (Caccamo et al., 2006). However, since AF267B is a relatively nonselective muscarinic agonist as demonstrated in the present study, it has been difficult to confirm which of the mAChR subtypes are most important in mediating these AD modifying effects. Selective activation of M1 by TBPB increases non-amyloidogenic processing and reduces Aβ formation, as previously reported with other nonselective muscarinic agonists. These data are consistent with the hypothesis that the effects of AF267B on APP processing are mediated by M1 and provide evidence that selective M1 activation by an allosteric mechanism may provide a novel disease-modifying approach for AD. In future studies it will be important to perform further in vivo studies with TBPB in 3xTg-AD mice to determine whether the range of effects of AF267B in these animals can be induced by the more selective M1 agonist. Also, it will be important to determine effects of TBPB other AD models and animal models of cognitive function.

In summary, TBPB is a highly selective, allosteric agonist of the M1 mAChR with robust efficacy in potentiating NMDAR currents, processing of APP through the non-amyloidogenic pathway, and in preclinical models predictive of antipsychotic-like activity. Our findings confirm and extend the role of the M1 mAChR in many of the documented effects of the M1/M4-preferring muscarinic orthosteric agonist xanomeline. Moreover, the present data indicate that selective activation of M1 may provide a novel therapeutic approach for the treatment of psychotic symptoms associated with schizophrenia and AD.


This work was supported by grants from the National Institute of Mental Health (PJC, CKJ, AEB), the National Institute of Neurological Disorders and Stroke and the Alzheimer’s Association (IIRG-07-57131) (CWL), pre-doctoral fellowship from the National Institute on Aging and the PhRMA Foundation (AEB), the Dystonia Medical Research Foundation (ZX), Career Award at the Scientific Interface from the Burroughs Wellcome Fund (TEP). Vanderbilt is a site in the National Institutes of Health-supported Molecular Libraries Screening Center Network (MLSCN). A portion of these studies was presented at the American College of Neuropsychopharmacology, 45th Annual Meeting, Hollywood, Florida, December 3-7, 2006.


amyloid precursor protein
Chinese hamster ovary
Fos-like immunoreactivity
muscarinic acetylcholine receptors
muscarinic receptor subtypes
nucleus accumbens
N-methyl-D-aspartate receptor
prefrontal cortex


  • Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, et al. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci. 2003;6:51–58. [PubMed]
  • Ansari MS, Kessler RM, Clanton JA, de Paulis T, Baldwin RM. Comparison of three [18F]fallypride methods intended for automated remote chemistry modules. J Nucl Med. 2006;47:159P.
  • Bodick NC, Offen WW, Levey AI, Cutler NR, Gauthier SG, et al. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol. 1997a;54:465–473. [PubMed]
  • Bodick NC, Offen WW, Shannon HE, Satterwhite J, Lucas R, et al. The selective muscarinic agonist xanomeline improves both the cognitive deficits and behavioral symptoms of Alzheimer disease. Alzheimer Dis Assoc Disord. 1997b;11 Suppl 4:S16–22. [PubMed]
  • Bonner TI, Buckley NJ, Young AC, Brann MR. Identification of a family of muscarinic acetylcholine receptor genes. Science. 1987;237:527–532. [PubMed]
  • Bonner TI, Young AC, Brann MR, Buckley NJ. Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron. 1988;1:403–410. [PubMed]
  • Bubser M, Deutch AY. Differential effects of typical and atypical antipsychotic drugs on striosome and matrix compartments of the striatum. Eur J Neurosci. 2002;15:713–720. [PubMed]
  • Bymaster FP, Carter PA, Peters SC, Zhang W, Ward JS, et al. Xanomeline compared to other muscarinic agents on stimulation of phosphoinositide hydrolysis in vivo and other cholinomimetic effects. Brain Res. 1998;795:179–190. [PubMed]
  • Caccamo A, Oddo S, Billings LM, Green KN, Martinez-Coria H, Fisher A, LaFerla FM. M1 receptors play a cnetral role in modulating AD-like pathology in transgenic mice. Neuron. 2006;49:671–682. [PubMed]
  • Christopoulos A. Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat Rev Drug Discov. 2002;1:198–210. [PubMed]
  • Coyle JT, Tsai G, Goff DC. Ionotropic glutamate receptors as therapeutic targets in schizophrenia. Curr Drug Target CNS Neurol Disord. 2002;1:183–189. [PubMed]
  • Cummings JL, Nadel A, Masterman D, Cyrus PA. Efficacy of metrifonate in improving the psychiatric and behavioral disturbances of patients with Alzheimer’s disease. J Geriatr Psychiatry Neurol. 2001;14:101–108. [PubMed]
  • Deutch AY. Identification of the neural systems subserving the actions of clozapine: clues from immediate-early gene expression. J Clin Psychiatry. 1994;55 Suppl B:37–42. [PubMed]
  • Eglen RA, Choppin A, Watson N. Therapeutic opportunities from muscarinic research. TRENDS Pharm Sci. 2001;22:409–414. [PubMed]
  • Felder CC, Porter AC, Skillman TL, Zhang L, Bymaster FP, Nathanson NM, Hamilton SE, Gomeza J, Wess J, McKinzie DL. Elucidating the role of muscarinic receptors in psychosis. Life Sci. 2001;68:2605–2613. [PubMed]
  • Fibiger HC. Neuroanatomical targets of neuroleptic drugs as revealed by Fos immunochemistry. J Clin Psychiatry. 1994;55 Suppl B:33–6. [PubMed]
  • Gerber DJ, Sotnikova TD, Gainetdinov RR, Huang SY, Caron MG, et al. Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc Natl Acad Sci USA. 2001;98:15312–15317. [PubMed]
  • Geyer MA, Ellenbroek B. Animal behavior models of the mechanisms underlying antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry. 2003;7:1071–9. [PubMed]
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–356. [PubMed]
  • Hemstapat K, Da Costa H, Nong Y, Brady AE, Luo Q, et al. A Novel Family of Potent Negative Allosteric Modulators of Group II Metabotropic Glutamate Receptors. J Pharmacol Exp Ther. 2007;322:254–64. [PubMed]
  • Irwin S. Comprehensive observational assessment: IA. A systematic, quantitative procedure for assessing the behavioral and physiologic state of the mouse. Psychopharmacologia. 1968;13:222–257. [PubMed]
  • Jones CK, Brady AE, Bubser M, Deutch AY, Williams LC, et al. TBPB is a highly selective M1 allosteric muscarinic receptor agonist in vitro and produces robust antipsychotic-like effects in vivo. Neuropsychopharmacol. 2006;31:S116.
  • Kessler RM, Votaw JR, de Paulis T, Bingham DR, Ansari MS, Mason NS, Holburn G, Schmidt DE, Votaw DB, Manning RG, Ebert MH. Evaluation of 5-[18F]fluoropropylepidepride as a potential PET radioligand for imaging dopamine D2 receptors. Synapse. 1993;15:169–176. [PubMed]
  • Kessler RM, Ansari MS, Riccardi P, Li R, Jayathilake K, et al. Occupancy of striatal and extrastriatal dopamine D2 receptors by clozapine and quetiapine. Neuropsychopharmacol. 2006;31:1991–2001. [PubMed]
  • Kessler RM, Ansari MS, Riccardi P, Li R, Jayathilake K, et al. Occupancy of striatal and extrastriatal dopamine D2/D3 receptors by olanzapine and haloperidol. Neuropsychopharmacol. 2005;30:2283–2289. [PubMed]
  • Kinney GG. Muscarinic Receptor Activation for the Treatment of Schizophrenia. Neuropsychopharmacol. 2006;31:S26.
  • Levey AI, Kitt CA, Simonds WF, Price DL, Brann MR. Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci. 1991;11:3218–3226. [PubMed]
  • Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, et al. Distribution volume ratios without blood sampling from graphical analysis and PET data. J Cereb Blood Flow Metab. 1996;16:834–840. [PubMed]
  • Marino MJ, Conn PJ. Direct and indirect modulation of the N-methyl D-aspartate receptor. Curr Drug Target CNS Neurol Disord. 2002;1:1–16. [PubMed]
  • Marino MJ, Rouse ST, Levey AI, Potter LT, Conn PJ. Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proc Natl Acad Sci U S A. 1998;95:11465–11470. [PubMed]
  • Moore NA, Tye NC, Axton MS, Risius FC. The behavioral pharmacology of olanzapine, a novel “atypical” antipsychotic agent. J Pharmacol Exp Ther. 1992;262:545–51. [PubMed]
  • Mukherjee J, Christian BT, Narayanan TK, Shi B, Mantil J. Evaluation of dopamine D-2 receptor occupancy by clozapine, risperidone, and haloperidol in vivo in the rodent and nonhuman primate brain using 18F-fallypride. Neuropsychopharmacol. 2001;25:476–488. [PubMed]
  • Perry KW, Nisenbaum LK, George CA, Shannon HE, Felder CC, et al. The muscarinic agonist xanomeline increases monoamine release and immediate early gene expression in the rat prefrontal cortex. Biol Psychiatry. 2001;49:716–725. [PubMed]
  • Reynolds GP. Receptor mechanisms in the treatment of schizophrenia. J Psychopharmacol. 2004;18:340–345. [PubMed]
  • Rodriguez AL, Nong Y, Sekaran NK, Alagille D, Tamagnan GD, et al. A close structural analog of 2-methyl-6-(phenylethynyl)-pyridine acts as a neutral allosteric site ligand on metabotropic glutamate receptor subtype 5 and blocks the effects of multiple allosteric modulators. Mol Pharmacol. 2005;68:1793–802. [PubMed]
  • Rouse ST, Marino MJ, Potter LT, Conn PJ, Levey AI. Muscarinic receptor subtypes involved in hippocampal circuits. Life Sci. 1999;64:501–509. [PubMed]
  • Shannon HE, Rasmussen K, Bymaster FP, Hart JC, Peters SC, et al. Xanomeline, an M(1)/M(4) preferring muscarinic cholinergic receptor agonist, produces antipsychotic-like activity in rats and mice. Schizophr Res. 2000;42:249–259. [PubMed]
  • Shekhar A, Potter WZ, Lienemann J, Sunblad K, Lightfoot J, et al. Efficacy of xanomeline, a selective muscarinic agonist, in treating schizophrenia: A Double-Blind, Placebo Controlled Study. American College of Neuropsychopharmacolgy, 40th Annual Meeting; Waikoloa, Hawaii. 2001.
  • Shirey JK, Xiang Z, Orton D, Brady A, Johnson KA, et al. An allosteric potentiator of M4 mAChR modulates hippocampal synaptic transmission. Nat Chem Biol. 2008;4(1):42–50. [PubMed]
  • Spalding TA, Ma JN, Ott TR, Friberg M, Bajpai A, et al. Structural requirements of transmembrane domain 3 for activation by the M1 muscarinic receptor agonists AC-42, AC-260584, clozapine, and N-desmethylclozapine: evidence for three distinct modes of receptor activation. Mol Pharmacol. 2006;70:1974–1983. [PubMed]
  • Spalding TA, Trotter C, Skjaerbaek N, Messier TL, Currier EA, et al. Discovery of an ectopic activation site on the M(1) muscarinic receptor. Mol Pharmacol. 2002;61:1297–1302. [PubMed]
  • Sorbera LA, Bozzo J, Serradell N. Alzheimer’s disease one century later: the search for effective therapeutic targets continues. Drugs of the Future. 2007;32:625–641.
  • Stanhope KJ, Mirza NR, Bickerdike MJ, Bright JL, Harrington NR, Hesselink MB, Kennett GA, Lightowler S, Sheardown MJ, Syed R, Upton RL, Wadsworth G, Weiss SM, Wyatt A. The muscarinic receptor agonist xanomeline has an antipsychotic-like profile in the rat. J Pharmacol Exp Ther. 2001;299:782–792. [PubMed]
  • Sur C, Mallorga P, Wittmann M, Jacobson M, Pascarella D, et al. N-Desmethylclozapine, a novel allosteric agonist at muscarinic 1 receptor potentiates N-methyl-D-aspartate receptor activity. Proc Nat Acad Sci USA. 2003;100:13674–13679. [PubMed]
  • Tarsy D, Simon DK. Dystonia. N Engl J Med. 2006;335:818–829. [PubMed]
  • Tantawy MN, Peterson TE, Jones C, Bladwin RM, Ansari M, Kessler RM. Feasibility of determining [18F]Fallypride binding potential with delayed scans. Society of Nuclear Medicine 54th annual meeting; Washington, D.C.. 2007. No. 32.
  • Waelbroeck M. Allosteric drugs acting at muscarinic acetylcholine receptors. Neurochem Res. 2003;28:419–422. [PubMed]
  • Weiner DM, Meltzer HY, Veinbergs I, Donohue EM, Spalding TA, et al. The role of M1 muscarinic receptor agonism of N-desmethylclozapine in the unique clinical effects of clozapine. Psychopharmacol. 2004;177:207–216. [PubMed]
  • Young CD, Bubser M, Meltzer HY, Deutch AY. Clozapine pretreatment modifies haloperidol-elicited forebrain Fos induction: a regionally-specific double dissociation. Psychopharmacol. 1999;144:255–263. [PubMed]
  • Zhang W, Yamada M, Gomeza J, Basile AS, Wess J. Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1-M5 muscarinic receptor knock-out mice. J Neurosci. 2002;22:6347–6352. [PubMed]