1. McIntosh AR. Towards a network theory of cognition. Neural Netw. 2000;13:861–870. [PubMed] 2. Bressler SL, Kelso JAS. Cortical coordination dynamics and cognition. Trends in Cognitive Science. 2001;5:26–36. [PubMed] 3. Bressler SL. Understanding cognition through large-scale cortical networks. Curr Dir Psychol Sci. 2002;11:58–61.

4. Jirsa VK. Connectivity and dynamics of neural information processing. Neuroinformatics. 2004;2:183–204. [PubMed] 5. Beurle RL. Properties of a mass of cells capable of regenerating pulses. Philos Trans Phys Sci Lon B. 1956;240:55–94.

6. Rolls ET, Deco G. Computational neuroscience of vision. Oxford: Oxford University Press; 2002.

7. Tuckwell H. Introduction to theoretical neurobiology. Cambridge: Cambridge University Press; 1988.

8. Dayan P, Abbott L. Theoretical neuroscience: computational and mathematical modeling of
neural systems. Boston: MIT Press; 2002.

9. Jirsa VK, McIntosh AR. Handbook of brain connectivity. Berlin: Springer; 2007.

10. Brunel N, Wang X. Effects of neuromodulation in a cortical network model of object
working memory dominated by recurrent inhibition. J Comput Neurosci. 2001;11:63–85. [PubMed] 11. De Groff D, Neelakanta P, Sudhakar R, Aalo V. Stochastical aspects of neuronal dynamics: Fokker-Planck
approach. Biol Cybern. 1993;69:155–164. [PubMed] 12. Feller W. Diffusion equations in genetics. 1951. In: Proceedings of the second Berkeley symposium on mathematical
statistics and probability; 31 July to 12 August, 1950; Berkeley,
California, United States. Berkeley: University of California
Press.

13. Ricciardi L, Sacerdote L. The Ornstein-Uhlenbeck process as a model for neuronal activity.
I. Mean and variance of the firing time. Biol Cybern. 1979;35:1–9. [PubMed] 14. Lansky P, Sacerdote L, Tomassetti F. On the comparison of feller and Ornstein-Uhlenbeck models for
neural activity. Biol Cybern. 1995;73:457–465. [PubMed] 15. Knight B, Manin D, Sirovich L. Gerf EC, editor. Dynamical models of interacting neuron populations. 1996. Symposium on robotics and cybernetics: computational engineering in
systems applications. Lille, France: Cite Scientifique.

16. Omurtag A, Knight B, Sirovich L. On the simulation of large populations of neurons. J Comput Neurosci. 2000;8:51–53. [PubMed] 17. Knight B. Dynamics of encoding in neuron populations: some general
mathematical features. Neural Comput. 2000;12:473–518. [PubMed] 18. Gerstner W. Population dynamics of spiking neurons: fast transients,
asynchronous states and locking. Neural Comput. 2000;12:43–89. [PubMed] 19. Risken H. The Fokker-Planck equation. Berlin: Springer; 1996.

20. Del Giudice P, Fusi S, Mattia M. Modeling the formation of working memory with networks of
integrate-and-fire neurons connected by plastic synapses. J Physiol Paris. 2003;97:659–681. [PubMed] 21. Hebb D. The organization of behavior - a neurophysiological theory. New York: John Wiley; 1949.

22. Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222. [PubMed] 23. Deco G, Rolls ET. Attention, short term memory, and action selection: a unifying
theory. Prog Neurobiol. 2005;76:236–256. [PubMed] 24. Deco G, Lee TS. A unified model of spatial and object attention based on
inter-cortical biased competition. Neurocomputing. 2002;44–46:775–781.

25. Corchs S, Deco G. Large-scale neural model for visual attention: integration of
experimental single cell and fMRI data. Cereb Cortex. 2002;12:339–348. [PubMed] 26. Deco G, Pollatos O, Zihl J. The time course of selective visual attention: theory and
experiments. Vision Res. 2002;42:2925–2945. [PubMed] 27. Corchs S, Deco G. Feature-based attention in human visual cortex: simulation of
fMRI data. Neuroimage. 2004;21:36–45. [PubMed] 28. Deco G, Rolls ET. Object-based visual neglect: a computational hypothesis. Eur J Neurosci. 2002;16:1994–2000. [PubMed] 29. Deco G, Rolls ET. Attention and working memory: a dynamical model of neuronal
activity in the prefrontal cortex. Eur J Neurosci. 2003;18:2374–2390. [PubMed] 30. Deco G, Rolls ET. A neurodynamical cortical model of visual attention and invariant
object recognition. Vision Res. 2004;44:621–644. [PubMed] 31. Deco G, Rolls ET, Horwitz B. ‘What’ and ‘where’ in
visual working memory: a computational neurodynamical perspective for
integrating fMRI and single-neuron data. J Cogn Neurosci. 2004;16:683–701. [PubMed] 32. Szabo M, Almeida R, Deco G, Stetter M. Cooperation and biased competition model can explain attentional
filtering in the prefrontal cortex. Eur J Neurosci. 2004;19:1969–1977. [PubMed] 33. Deco G, Rolls ET. Neurodynamics of biased competition and cooperation for
attention: a model with spiking neurons. J Neurophysiol. 2005;94:295–313. [PubMed] 34. Chizhov A, Graham L. Population model of hippocampal pyramidal neurons, linking a
refractory density approach to conductance-based neurons. Phys Rev E. 2007;75:011924. [PubMed] 35. Harrison LM, David O, Friston KJ. Stochastic models of neuronal dynamics. Philos Trans R Soc Lond B Biol Sci. 2005;360:1075–1091. [PMC free article] [PubMed] 36. Griffith JS. A field theory of neural nets: I. Derivation of field equations. Bull Math Biophys. 1963;25:111–120. [PubMed] 37. Griffith JS. A field theory of neural nets: II. Properties of the field
equations. Bull Math Biophys. 1965;27:187–195. [PubMed] 38. Freeman WJ. Mass action in the nervous system. New York: Academic Press; 1975.

39. Jansen B, Rit V. Electroencephalogram and visual evoked potential generation in a
mathematical model of coupled cortical columns. Biol Cybern. 1995;73:357–366. [PubMed] 40. Wendling F, Bellanger J, Bartolomei F, Chauvel P. Relevance of nonlinear lumped parameter models in the analysis of
depth- eeg epileptic signals. Biol Cybern. 2000;83:367–378. [PubMed] 41. David O, Harrison L, Friston K. Modelling event-related responses in the brain. Neuroimage. 2005;25:756–770. [PubMed] 42. David O, Kiebel S, Harrison L, Mattout J, Kilner J, et al. Dynamic causal modeling of evoked responses in EEG and MEG. Neuroimage. 2006;30:1255–1272. [PubMed] 43. Wilson HR, Cowan JD. Excitatory and inhibitory interactions in localized populations
of model neurons. Biophys J. 1972;12:1–24. [PubMed] 44. Wilson HR, Cowan JD. A mathematical theory of the functional dynamics of cortical and
thalamic nervous tissue. Kybernetik. 1973;13:55–80. [PubMed] 45. Nunez PL. The brain wave equation: a model for EEG. Math Biosci. 1974;21:279–297.

46. Amari S. Homogeneous nets of neuron-like elements. Biol Cybern. 1975;17:211–220. [PubMed] 47. Amari S. Dynamics of pattern formation in lateral-inhibition type neural
fields. Biol Cybern. 1977;27:77–87. [PubMed] 48. Jirsa VK, Haken H. Field theory of electromagnetic brain activity. Phys Rev Lett. 1996;77:960–963. [PubMed] 49. Jirsa VK, Haken H. A derivation of a macroscopic field theory of the brain from the
quasi-microscopic neural dynamics. Physica D. 1997;99:503–526.

50. Robinson PA, Rennie CA, Wright JJ. Propagation and stability of waves of electrical activity in the
cerebral cortex. Phys Rev E. 1997;56:826–840.

51. Liley D, Bojak I. Understanding the transition to seizure by modeling the
epileptiform activity of general anesthetic agents. J Clin Neurophysiol. 2005;22:300–313. [PubMed] 52. Breakspear M, Terry J, Friston K. Modulation of excitatory synaptic coupling facilitates
synchronization and complex dynamics in a biophysical model of neuronal
dynamics. Network: Computation in Neural Systems. 2003;14:703–732. [PubMed] 54. Ermentrout B. Neural networks as spatio-temporal pattern-forming systems. Report Progress in Physics. 1998;61:353–430.

55. Coombes S. Waves, bumps, and patterns in neural field theories. Biol Cybern. 2005;93:91–108. [PubMed] 56. Colby C, Duhamel J, Goldberg M. Oculocentric spatial representation in parietal cortex. Cereb Cortex. 1995;5:470–481. [PubMed] 57. Goldman-Rakic P. Cellular basis of working memory. Neuron. 1995;14:477–485. [PubMed] 58. Durstewitz D, Seamans J, Sejnowski T. Neurocomputational models of working memory. Nat Neurosci. 2000;(3 Supplement):1184–1191. [PubMed] 59. Wang X. Synaptic reverberation underlying mnemonic persistent activity. Trends in Neurosciences. 2001;24:455–463. [PubMed] 60. Fall C, Lewis T, Rinzel J. Background-activity-dependent properties of a network model for
working memory that incorporates cellular bistability. Biol Cybern. 2005;93:109–118. [PubMed] 61. Hahnloser R. Emergence of neural integration in the head-direction system by
visual supervision. Neuroscience. 2003;120:877–891. [PubMed] 62. Redish AD, Elga AN, Touretzky DS. A coupled attractor model of the rodent head direction system. Network: Computation in Neural Systems. 1996;7:671–685.

63. Sharp PE, Blair HT, Cho J. The anatomical and computational basis of the rat head-direction
cell signal. Trends Neurosci. 2001;24:289–294. [PubMed] 64. Skaggs WE, Knierim JJ, Kudrimoti HS, McNaughton BL. A model of the neural basis of the rats sense of direction. Adv Neural Inf Process Syst. 1995;7:173–180. [PubMed] 65. Redish AD. Beyond the cognitive map: from place cells to episodic memory. Cambridge (Massachusetts): MIT Press; 1999.

66. Redish AD, Touretzky DS. The role of the hippocampus in solving the morris water maze. Neural Comput. 1998;10:73–111. [PubMed] 67. Samsonovich A, McNaughton B. Path integration and cognitive mapping in a continuous attractor
neural network model. J Neurosci. 1997;17:5900–5920. [PubMed] 68. Tsodyks M. Attractor neural network models of spatial maps in hippocampus. Hippocampus. 1999;9:481–489. [PubMed] 69. Erlhagen W, Schöner G. Dynamic field theory of movement preparation. Psych Rev. 2002;109:545–572. [PubMed] 70. Ben-Yishai R, Bar-Or L, Sompolinsky H. Theory of orientation tuning in visual cortex. Proc Natl Acad Sci U S A. 1995;92:3844–3848. [PubMed] 71. Laing C. Spiral waves in nonlocal equations. SIAM Journal on Applied Dynamical Systems. 2003;4:588–606.

72. Ermentrout G, Cowan J. A mathematical theory of visual hallucination patterns. Biol Cybern. 1979;34:137–150. [PubMed] 73. Laing C, Troy WC. PDE methods for nonlocal models. SIAM Journal on Applied Dynamical Systems. 2003;2:487–516.

74. Coombes S, Owen MR. Evans functions for integral neural field equations with
Heaviside firing rate function. SIAM Journal on Applied Dynamical Systems. 2004;34:574–600.

75. Chervin R, Pierce P, Connors B. Periodicity and directionality in the propagation of epileptiform
discharges across neortex. J Neurophysiol. 1988;60:1695–1713. [PubMed] 76. Golomb D, Amitai Y. Propagating neuronal discharges in neocortical slices:
computational and experimental study. J Neurophysiol. 1997;78:1199–1211. [PubMed] 77. Wu JY, Guan L, Tsau Y. Propagating activation during oscillations and evoked responses
in neocortical slices. J Neurosci. 1999;19:5005–5015. [PubMed] 78. Miles R, Traub R, Wong R. Spread of synchronous firing in longitudinal slices from the CA3
region of hippocampus. J Neurophysiol. 1995;60:1481–1496. [PubMed] 79. Kim U, Bal T, McCormick D. Spindle waves are propagating synchronized oscillations in the
ferret LGNd in vitro. J Neurophysiol. 1995;74:1301–1323. [PubMed] 80. Connors BW, Amitai Y. Generation of epileptiform discharges by local circuits in
neocortex. In: Schwartzkroin PA, editor. Epilepsy: models, mechanisms and concepts. Cambridge (United Kingdom): Cambridge University Press; 1993. pp. 388–424.

81. Ermentrout G, Kleinfeld D. Traveling electrical waves in cortex: insights from phase
dynamics and speculation on a computational role. Neuron. 2001;29:33–44. [PubMed] 82. Richardson K, Schiff S, Gluckman B. Propagating activation during oscillations and evoked responses
in neocortical slices. Phys Rev Lett. 2005;94:028103. [PubMed] 83. Nunez PL. Electric Fields of the Brain. Oxford (United Kingdom): Oxford University Press; 1981.

84. Nunez P. Neocortical dynamics and human EEG rhythms. New York/Oxford: Oxford University Press; 1995.

85. Wright JJ, Liley DTJ. Dynamics of the brain at global and microscopic scales: neural
networks and the EEG. Behav Brain Sci. 1996;19:285–320.

86. Robinson P, Rennie C, Rowe D. Dynamics of large-scale brain activity in normal arousal states
and epileptic seizures. Phys Rev E. 2002;65:41924. [PubMed] 87. Rennie C, Robinson P, Wright J. Unified neurophysical model of EEG spectra and evoked potentials. Biol Cybern. 2002;86:457–471. [PubMed] 88. Niedermeyer E, Lopes da Silva FH. Electroencephalography: basic principles, clinical applications, and
related fields. Philadelphia (Pennsylvania): Lippincott Williams and Wilkins; 1999.

89. Robinson PA, Drysdale PM, der Merwe V, Kyriakou HE, Rigozzi MK, et al. Bold responses to stimuli: dependence on frequency, stimulus
form, amplitude, and repetition rate. Neuroimage. 2006;31:589–599. [PubMed] 90. Robinson PA, Rennie CJ, Rowe DL, O'Connor SC, Wright JJ, et al. Neurophysical modeling of brain dynamics. Neuropsychopharmacol. 2003;28:S74–S79.

91. Robinson PA, Rennie CJ, Wright JJ, Bahramali H, Gordon E, et al. Prediction of electroencephalographic spectra from
neurophysiology. Phys Rev E. 2001;63:021903. doi:10.1103/PhysRevE.63.021903. [PubMed] 92. Breakspear M, Roberts JA, Terry JR, Rodrigues S, Mahant N, et al. A unifying explanation of primary generalized seizures through
nonlinear brain modeling and bifurcation analysis. Cereb Cortex. 2006;16:1296–1313. [PubMed] 93. Robinson P, Rennie C, Rowe D, O'Connor S. Estimation of multiscale neurophysiologic parameters by
elctroencephalographic means. Hum Brain Mapp. 2004;23:53–72. [PubMed] 94. Rowe D, Robinson P, Rennie C. Estimation of neurophysiological parameters from the waking EEG
using a biophysical model of brain dynamics. J Theor Biol. 2004;231:413–433. [PubMed] 95. Rennie CJ, Robinson PA, Wright JJ. Effects of local feedback on dispersion of electrical waves in
the cerebral cortex. Phys Rev E. 1999;59:3320–3329.

96. Koch C. Biophysics of computation. Information processing in single neurons. Oxford (United Kingdom): Oxford University Press; 1999.

97. Destexhe A, Sejnowski TJ. Thalamocortical assemblies: how ion channels, single neurons and large
scale networks organize sleep oscillations. Oxford (United Kingdom): Oxford University Press; 2001.

98. Sporns O. Complex Neural Dynamics. In: Jirsa VK, Kelso JAS, editors. Coordination dynamics: issues and trends. Berlin: Springer; 2003.

99. Braitenberg V, Schüz A. Anatomy of the cortex. Statistics and geometry. Berlin/Heidelberg/New York: Springer; 1991.

100. Robinson PA. Propagator theory of brain dynamics. Phys Rev E. 2005;72:1–13. [PubMed] 101. Robinson PA. Patchy propagators, cortical dynamics, and the generation of
spatially structured gamma oscillations. Phys Rev E. 2006;73:1–13. [PubMed] 102. Robinson PA. Visual gamma oscillations: correlations and other properties. Biol Cybern. 2007;97:317–335. [PubMed] 103. Jirsa VK, Kelso JAS. Spatiotemporal pattern formation in continuous systems with
heterogeneous connection topologies. Phys Rev E. 2000;62:8462–8465. [PubMed] 104. Qubbaj MR, Jirsa VK. Neural field dynamics with heterogeneous connection topology. Phys Rev Lett. 2007;93:238102. [PubMed] 105. Datko R. A procedure for determination of the exponential stability of
certain differential difference equations. Q Appl Math. 1978;36:279–292.

106. Freeman W. Nonlinear gain mediating cortical stimulus-response relations. Biol Cybern. 1979;33:237–247. [PubMed] 107. Freeman W. Nonlinear dynamics of paleocortex manifested in the olfactory
EEG. Biol Cybern. 1979;35:21–37. [PubMed] 108. Freeman W. Simulation of chaotic EEG patterns with a dynamic model of the
olfactory system. Biol Cybern. 1987;56:139–150. [PubMed] 109. Izhikevich E. Dynamical systems in neuroscience: the geometry of excitability and
bursting. Cambridge (Massachusetts): MIT Press; 2007.

110. Breakspear M, Jirsa V. Neuronal dynamics and brain connectivity. In: Jirsa VK, McIntosh AR, editors. Handbook of brain connectivity. Berlin: Springer; 2007.

111. Morris C, Lecar H. Voltage oscillations in the barnacle giant muscle fiber. Biophys J. 1981;35:193–213. [PubMed] 112. Larter R, Speelman B, Worth RM. A coupled ordinary differential equation lattice model for the
simulation of epileptic seizures. Chaos. 1999;9:795–804. [PubMed] 114. Breakspear M, Stam C. Dynamics of a neural system with a multiscale architecture. Philos Trans R Soc Lond B Biol Sci. 2005;360:1051–1074. [PMC free article] [PubMed] 115. Honey CJ, Kötter R, Breakspear M, Sporns O. Network structure of cerebral cortex shapes functional
connectivity on multiple time scales. Proc Natl Acad Sci U S A: 2007;104:10240–10245. [PubMed] 116. Friston K. Learning and inference in the brain. Neural Netw. 2003;16:1325–1352. [PubMed] 117. Friston K. A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci. 2005;360:815–836. [PMC free article] [PubMed] 118. Friston K. Transients, metastability and neuronal dynamics. Neuroimage. 1997;5:164–171. [PubMed] 119. Romo R, Hernandez A, Zainos A, Lemus L, Brody C. Neural correlates of decision making in secondary somatosensory
cortex. Nat Neurosci. 2002;5:1217–1225. [PubMed] 120. Romo R, Hernandez A, Zainos A, Salinas E. Correlated neuronal discharges that increase coding efficiency
during perceptual discrimination. Neuron. 2003;38:649–657. [PubMed] 121. Romo R, Hernandez A, Zainos A. Neuronal correlates of a perceptual decision in ventral premotor
cortex. Neuron. 2004;41:165–173. [PubMed] 122. Romo R, Salinas E. Touch and go: decision-making mechanisms in somatosensation. Annu Rev Neurosci. 2001;24:107–137. [PubMed] 123. Hernandez A, Zainos A, Romo R. Temporal evolution of a decision-making process in medial
premotor cortex. Neuron. 2002;33:959–972. [PubMed] 124. Romo R, Salinas E. Flutter discrimination: neural codes, perception, memory and
decision making. Nat Rev Neurosci. 2003;4:203–218. [PubMed] 125. Deco G, Rolls E. Decision-making and Weber's law: a neurophysiological
model. Eur J Neurosci. 2006;24:901–916. [PubMed] 126. Almonte F, Jirsa V, Large E, Tuller B. A cortical model of auditory streaming. Physica D. 2005;212:137–159.

127. van Noorden LPAS. Temporal coherence in the perception of tone sequences. 1975. Ph.D. thesis, Eindhoven (The Netherlands); Eindhoven University of
Technology.

128. Bregman AS. Auditory scene analysis: The perceptual organization of sound. Cambridge (Massachusetts): MIT Press; 1990.

129. Tougas Y, Bregman AS. The crossing of auditory streams. J Exp Psychol Hum Percept Perform. 1985a;11:788–798.

130. Wendling F, Bartolomei F, Bellanger J, Chauvel P. Epileptic fast activity can be explained by a model of impaired
GABAergic dendritic inhibition. Eur J Neurosci. 2002;15:1499–1508. [PubMed] 131. da Silva F, Blanes W, Kalitzin S, Parra J, Suffczynski P, et al. Epilepsies as dynamical diseases of brain systems: basic models
of the transition between normal and epileptic activity. Epilepsia. 2003;44:72–83. [PubMed] 132. Perez Velazquez JL, Cortez MA, Snead OC, Wennberg R. Dynamical regimes underlying epileptiform events: role of
instabilities and bifurcations in brain activity. Physica D. 2003;186:205–220.

133. Kramer M, Kirsch H, Szeri A. Pathological pattern formation and cortical propagation of
epileptic seizures. J R Soc Interface. 2005;2:113–127. [PMC free article] [PubMed] 134. Wilson M, Sleigh J, Steyn-Ross D, Steyn-Ross M. General anesthetic-induced seizures can be explained by a
mean-field model of cortical dynamics. Anesthesiology. 2006;104:588–593. [PubMed] 135. Rodrigues S, Terry J, Breakspear M. On the genesis of spike-wave oscillations in a mean-field model
of human thalamic and corticothalamic dynamics. Phys Lett A. 2006;355:352–357.