Search tips
Search criteria 


Logo of jvirolPermissionsJournals.ASM.orgJournalJV ArticleJournal InfoAuthorsReviewers
J Virol. 1991 November; 65(11): 6094–6100.
PMCID: PMC250285

Persistent human immunodeficiency virus type 1 infection in human fetal glial cells reactivated by T-cell factor(s) or by the cytokines tumor necrosis factor alpha and interleukin-1 beta.


Human immunodeficiency virus type 1 (HIV-1) infection of the brain has been associated with a severe dementing illness in children and adults. However, HIV-1 antigens are most frequently found in macrophages and microglial cells. To determine the extent of susceptibility of neuroglial cells to infection, the HIV-1 genome was introduced into cells cultured from human fetal brain tissue. Astroglial cells rapidly transcribed the viral genome producing high levels of p24 protein and infectious virions which peaked two to three days posttransfection. Thereafter HIV-1 genome expression progressively diminished and a persistent phase of infection developed during which neither virus nor viral proteins could be demonstrated by immunodetection methods. Cocultivation with CD4+ T cells at any time during the persistent infection resulted in resumption of p24 synthesis and virus multiplication. The release of persistence did not require direct cell-cell contact between the glial and T cells, since separation of the two cell types across a permeable membrane resulted in a delayed but similar resumption of p24 synthesis and virus multiplication. The persistently infected glial cells could also be stimulated to produce viral p24 protein if either tumor necrosis factor alpha or interleukin-1 beta was added to the medium without T cells present. These results suggest that astrocytes may serve as an undetected reservoir for HIV-1 and disseminate the virus to other susceptible cells in the brain upon triggering by some cellular or biochemical signal.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.8M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A, Martin MA. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol. 1986 Aug;59(2):284–291. [PMC free article] [PubMed]
  • Cheng-Mayer C, Rutka JT, Rosenblum ML, McHugh T, Stites DP, Levy JA. Human immunodeficiency virus can productively infect cultured human glial cells. Proc Natl Acad Sci U S A. 1987 May;84(10):3526–3530. [PubMed]
  • Chiodi F, Fuerstenberg S, Gidlund M, Asjö B, Fenyö EM. Infection of brain-derived cells with the human immunodeficiency virus. J Virol. 1987 Apr;61(4):1244–1247. [PMC free article] [PubMed]
  • Christofinis G, Papadaki L, Sattentau Q, Ferns RB, Tedder R. HIV replicates in cultured human brain cells. AIDS. 1987 Dec;1(4):229–234. [PubMed]
  • Clapham PR, Weber JN, Whitby D, McIntosh K, Dalgleish AG, Maddon PJ, Deen KC, Sweet RW, Weiss RA. Soluble CD4 blocks the infectivity of diverse strains of HIV and SIV for T cells and monocytes but not for brain and muscle cells. Nature. 1989 Jan 26;337(6205):368–370. [PubMed]
  • Dewhurst S, Sakai K, Bresser J, Stevenson M, Evinger-Hodges MJ, Volsky DJ. Persistent productive infection of human glial cells by human immunodeficiency virus (HIV) and by infectious molecular clones of HIV. J Virol. 1987 Dec;61(12):3774–3782. [PMC free article] [PubMed]
  • Epstein LG, Sharer LR, Cho ES, Myenhofer M, Navia B, Price RW. HTLV-III/LAV-like retrovirus particles in the brains of patients with AIDS encephalopathy. AIDS Res. 1984;1(6):447–454. [PubMed]
  • Falloon J, Eddy J, Wiener L, Pizzo PA. Human immunodeficiency virus infection in children. J Pediatr. 1989 Jan;114(1):1–30. [PubMed]
  • Fauci AS. The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science. 1988 Feb 5;239(4840):617–622. [PubMed]
  • Folks T, Benn S, Rabson A, Theodore T, Hoggan MD, Martin M, Lightfoote M, Sell K. Characterization of a continuous T-cell line susceptible to the cytopathic effects of the acquired immunodeficiency syndrome (AIDS)-associated retrovirus. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4539–4543. [PubMed]
  • Folks TM, Clouse KA, Justement J, Rabson A, Duh E, Kehrl JH, Fauci AS. Tumor necrosis factor alpha induces expression of human immunodeficiency virus in a chronically infected T-cell clone. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2365–2368. [PubMed]
  • Folks TM, Justement J, Kinter A, Dinarello CA, Fauci AS. Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line. Science. 1987 Nov 6;238(4828):800–802. [PubMed]
  • Giulian D, Vaca K, Noonan CA. Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science. 1990 Dec 14;250(4987):1593–1596. [PubMed]
  • Grimaldi LM, Martino GV, Franciotta DM, Brustia R, Castagna A, Pristerà R, Lazzarin A. Elevated alpha-tumor necrosis factor levels in spinal fluid from HIV-1-infected patients with central nervous system involvement. Ann Neurol. 1991 Jan;29(1):21–25. [PubMed]
  • Gyorkey F, Melnick JL, Gyorkey P. Human immunodeficiency virus in brain biopsies of patients with AIDS and progressive encephalopathy. J Infect Dis. 1987 May;155(5):870–876. [PubMed]
  • Harouse JM, Kunsch C, Hartle HT, Laughlin MA, Hoxie JA, Wigdahl B, Gonzalez-Scarano F. CD4-independent infection of human neural cells by human immunodeficiency virus type 1. J Virol. 1989 Jun;63(6):2527–2533. [PMC free article] [PubMed]
  • Johnson RT, McArthur JC, Narayan O. The neurobiology of human immunodeficiency virus infections. FASEB J. 1988 Nov;2(14):2970–2981. [PubMed]
  • Kinter AL, Poli G, Maury W, Folks TM, Fauci AS. Direct and cytokine-mediated activation of protein kinase C induces human immunodeficiency virus expression in chronically infected promonocytic cells. J Virol. 1990 Sep;64(9):4306–4312. [PMC free article] [PubMed]
  • Koyanagi Y, Miles S, Mitsuyasu RT, Merrill JE, Vinters HV, Chen IS. Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms. Science. 1987 May 15;236(4803):819–822. [PubMed]
  • Li XL, Moudgil T, Vinters HV, Ho DD. CD4-independent, productive infection of a neuronal cell line by human immunodeficiency virus type 1. J Virol. 1990 Mar;64(3):1383–1387. [PMC free article] [PubMed]
  • Lieberman AP, Pitha PM, Shin HS, Shin ML. Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6348–6352. [PubMed]
  • Lyman WD, Kress Y, Kure K, Rashbaum WK, Rubinstein A, Soeiro R. Detection of HIV in fetal central nervous system tissue. AIDS. 1990 Sep;4(9):917–920. [PubMed]
  • Major EO, Vacante DA. Human fetal astrocytes in culture support the growth of the neurotropic human polyomavirus, JCV. J Neuropathol Exp Neurol. 1989 Jul;48(4):425–436. [PubMed]
  • Pekovic DD, Lapointe N, Geoffroy G, Ajdukovic D, Michaud J. HIV p24 antigen in brains of children with AIDS: the antigen-containing cells do not react with monoclonal antibody to OKT4 or macrophage markers. AIDS. 1988 Oct;2(5):404–405. [PubMed]
  • Poli G, Bressler P, Kinter A, Duh E, Timmer WC, Rabson A, Justement JS, Stanley S, Fauci AS. Interleukin 6 induces human immunodeficiency virus expression in infected monocytic cells alone and in synergy with tumor necrosis factor alpha by transcriptional and post-transcriptional mechanisms. J Exp Med. 1990 Jul 1;172(1):151–158. [PMC free article] [PubMed]
  • Poli G, Kinter A, Justement JS, Kehrl JH, Bressler P, Stanley S, Fauci AS. Tumor necrosis factor alpha functions in an autocrine manner in the induction of human immunodeficiency virus expression. Proc Natl Acad Sci U S A. 1990 Jan;87(2):782–785. [PubMed]
  • Poli G, Orenstein JM, Kinter A, Folks TM, Fauci AS. Interferon-alpha but not AZT suppresses HIV expression in chronically infected cell lines. Science. 1989 May 5;244(4904):575–577. [PubMed]
  • Pomerantz RJ, Trono D, Feinberg MB, Baltimore D. Cells nonproductively infected with HIV-1 exhibit an aberrant pattern of viral RNA expression: a molecular model for latency. Cell. 1990 Jun 29;61(7):1271–1276. [PubMed]
  • Price RW, Brew B, Sidtis J, Rosenblum M, Scheck AC, Cleary P. The brain in AIDS: central nervous system HIV-1 infection and AIDS dementia complex. Science. 1988 Feb 5;239(4840):586–592. [PubMed]
  • Shoeman RL, Höner B, Stoller TJ, Kesselmeier C, Miedel MC, Traub P, Graves MC. Human immunodeficiency virus type 1 protease cleaves the intermediate filament proteins vimentin, desmin, and glial fibrillary acidic protein. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6336–6340. [PubMed]
  • Ward JM, O'Leary TJ, Baskin GB, Benveniste R, Harris CA, Nara PL, Rhodes RH. Immunohistochemical localization of human and simian immunodeficiency viral antigens in fixed tissue sections. Am J Pathol. 1987 May;127(2):199–205. [PubMed]
  • Watkins BA, Dorn HH, Kelly WB, Armstrong RC, Potts BJ, Michaels F, Kufta CV, Dubois-Dalcq M. Specific tropism of HIV-1 for microglial cells in primary human brain cultures. Science. 1990 Aug 3;249(4968):549–553. [PubMed]
  • Wigdahl B, Kunsch C. Role of HIV in human nervous system dysfunction. AIDS Res Hum Retroviruses. 1989 Aug;5(4):369–374. [PubMed]
  • Wiley CA, Schrier RD, Nelson JA, Lampert PW, Oldstone MB. Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci U S A. 1986 Sep;83(18):7089–7093. [PubMed]
  • Yamada M, Zurbriggen A, Oldstone MB, Fujinami RS. Common immunologic determinant between human immunodeficiency virus type 1 gp41 and astrocytes. J Virol. 1991 Mar;65(3):1370–1376. [PMC free article] [PubMed]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)