Search tips
Search criteria 


Logo of jvirolPermissionsJournals.ASM.orgJournalJV ArticleJournal InfoAuthorsReviewers
J Virol. 1993 December; 67(12): 7238–7245.
PMCID: PMC238186

Vpu-induced degradation of CD4: requirement for specific amino acid residues in the cytoplasmic domain of CD4.


Two functions have been attributed to the product of the human immunodeficiency virus type 1 vpu open reading frame: it increases virion release from infected cells and induces rapid degradation of CD4 shortly after its synthesis. In the absence of Vpu, newly synthesized gp160 and CD4 associate in the endoplasmic reticulum (ER), forming a complex whose further maturation is blocked and which is eventually degraded. In studies using NL4-3-based expression vectors, it has been previously shown that Vpu induces the release of gp160 from the complex that it forms with CD4 in the ER. This release, which appears to be due to the rapid degradation of CD4 induced by Vpu, allows gp160 to transit to the Golgi, where it matures further. We investigated which regions of CD4 are important for its susceptibility to Vpu-induced degradation by transfecting HeLa cells with isogenic vpu-positive and vpu-negative proviruses and vectors expressing various truncated or mutated CD4 molecules. The results suggested that the cytoplasmic domain of CD4 contains a determinant lying within amino acids 418 to 425 that is critical for susceptibility to Vpu-induced degradation. Neither the phosphorylation sites in the cytoplasmic domain nor the Lck interaction region was required for the effect. Vpu-induced degradation was specific for CD4, since CD8, even when retained in the ER, was not degraded. In addition, under conditions of high-level Vpu expression, CD4 degradation could be observed in the absence of gp160 or other means of retaining CD4 in the ER.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.0M), or click on a page image below to browse page by page.

Images in this article

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)