Search tips
Search criteria 


Logo of jvirolPermissionsJournals.ASM.orgJournalJV ArticleJournal InfoAuthorsReviewers
J Virol. 1993 August; 67(8): 4914–4922.
PMCID: PMC237879

RNA structure and heterologous recombination in the double-stranded RNA bacteriophage phi 6.


Bacteriophage phi 6 has a genome of three segments of double-stranded RNA, designated L, M, and S. A 1.2-kbp kanamycin resistance gene was inserted into segment M but was shown to be genetically unstable because of a high recombination rate between segment M and the 3' ends of segments S and L. The high rate of recombination is due to complementary homopolymer tracts bounding the kan gene. Removal of one arm of this potential hairpin stabilizes the insertion. The insertion of a 241- or 427-bp lacZ' gene into segment M leads to a stable Lac+ phage. The insertion of the same genes bounded by complementary homopolymer arms leads to recombinational instability. A stable derivative of this phage was shown to have lost one of the homopolymer arms. Several other conditions foster recombination. The truncation of a genomic segment at the 3' end prevents replication, but such a damaged molecule can be rescued by recombination. Similarly, insertion of the entire 3-kb lacZ gene prevents normal formation of virus, but the viral genes can be rescued by recombination. It appears that conditions leading to the retardation or absence of replication of a particular genomic segment facilitate recombinational rescue.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.8M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bagdasarian M, Lurz R, Rückert B, Franklin FC, Bagdasarian MM, Frey J, Timmis KN. Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene. 1981 Dec;16(1-3):237–247. [PubMed]
  • Ballard A, McCrae MA, Desselberger U. Nucleotide sequences of normal and rearranged RNA segments 10 of human rotaviruses. J Gen Virol. 1992 Mar;73(Pt 3):633–638. [PubMed]
  • Bamford DH, Romantschuk M, Somerharju PJ. Membrane fusion in prokaryotes: bacteriophage phi 6 membrane fuses with the Pseudomonas syringae outer membrane. EMBO J. 1987 May;6(5):1467–1473. [PubMed]
  • Bergmann M, García-Sastre A, Palese P. Transfection-mediated recombination of influenza A virus. J Virol. 1992 Dec;66(12):7576–7580. [PMC free article] [PubMed]
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. [PubMed]
  • Bujarski JJ, Kaesberg P. Genetic recombination between RNA components of a multipartite plant virus. Nature. 321(6069):528–531. [PubMed]
  • Casadaban MJ, Martinez-Arias A, Shapira SK, Chou J. Beta-galactosidase gene fusions for analyzing gene expression in escherichia coli and yeast. Methods Enzymol. 1983;100:293–308. [PubMed]
  • Day LA, Mindich L. The molecular weight of bacteriophage phi 6 and its nucleocapsid. Virology. 1980 Jun;103(2):376–385. [PubMed]
  • Emori Y, Iba H, Okada Y. Transcriptional regulation of three double-stranded RNA segments of bacteriophage phi 6 in vitro. J Virol. 1983 Apr;46(1):196–203. [PMC free article] [PubMed]
  • FRAENKEL-CONRAT H, SINGER B, TSUGITA A. Purification of viral RNA by means of bentonite. Virology. 1961 May;14:54–58. [PubMed]
  • Franklin RM. Purification and properties of the replicative intermediate of the RNA bacteriophage R17. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1504–1511. [PubMed]
  • Gottlieb P, Strassman J, Bamford DH, Mindich L. Production of a polyhedral particle in Escherichia coli from a cDNA copy of the large genomic segment of bacteriophage phi 6. J Virol. 1988 Jan;62(1):181–187. [PMC free article] [PubMed]
  • Gottlieb P, Strassman J, Qiao XY, Frucht A, Mindich L. In vitro replication, packaging, and transcription of the segmented double-stranded RNA genome of bacteriophage phi 6: studies with procapsids assembled from plasmid-encoded proteins. J Bacteriol. 1990 Oct;172(10):5774–5782. [PMC free article] [PubMed]
  • Haima P, van Sinderen D, Schotting H, Bron S, Venema G. Development of a beta-galactosidase alpha-complementation system for molecular cloning in Bacillus subtilis. Gene. 1990 Jan 31;86(1):63–69. [PubMed]
  • HIRST GK. Genetic recombination with Newcastle disease virus, polioviruses, and influenza. Cold Spring Harb Symp Quant Biol. 1962;27:303–309. [PubMed]
  • Kirkegaard K, Baltimore D. The mechanism of RNA recombination in poliovirus. Cell. 1986 Nov 7;47(3):433–443. [PubMed]
  • Lai MM. RNA recombination in animal and plant viruses. Microbiol Rev. 1992 Mar;56(1):61–79. [PMC free article] [PubMed]
  • Lai MM, Baric RS, Makino S, Keck JG, Egbert J, Leibowitz JL, Stohlman SA. Recombination between nonsegmented RNA genomes of murine coronaviruses. J Virol. 1985 Nov;56(2):449–456. [PMC free article] [PubMed]
  • McIntyre M, Rosenbaum V, Rappold W, Desselberger M, Wood D, Desselberger U. Biophysical characterization of rotavirus particles containing rearranged genomes. J Gen Virol. 1987 Nov;68(Pt 11):2961–2966. [PubMed]
  • Miller JH, Lebkowski JS, Greisen KS, Calos MP. Specificity of mutations induced in transfected DNA by mammalian cells. EMBO J. 1984 Dec 20;3(13):3117–3121. [PubMed]
  • Mindich L, Lehman J. Characterization of phi 6 mutants that are temperature sensitive in the morphogenetic protein P12. Virology. 1983 Jun;127(2):438–445. [PubMed]
  • Mindich L, MacKenzie G, Strassman J, McGraw T, Metzger S, Romantschuk M, Bamford D. cDNA cloning of portions of the bacteriophage phi 6 genome. J Bacteriol. 1985 Jun;162(3):992–999. [PMC free article] [PubMed]
  • Mindich L, Nemhauser I, Gottlieb P, Romantschuk M, Carton J, Frucht S, Strassman J, Bamford DH, Kalkkinen N. Nucleotide sequence of the large double-stranded RNA segment of bacteriophage phi 6: genes specifying the viral replicase and transcriptase. J Virol. 1988 Apr;62(4):1180–1185. [PMC free article] [PubMed]
  • Mindich L, Qiao X, Onodera S, Gottlieb P, Strassman J. Heterologous recombination in the double-stranded RNA bacteriophage phi 6. J Virol. 1992 May;66(5):2605–2610. [PMC free article] [PubMed]
  • Ojala PM, Romantschuk M, Bamford DH. Purified phi 6 nucleocapsids are capable of productive infection of host cells with partially disrupted outer membranes. Virology. 1990 Oct;178(2):364–372. [PubMed]
  • Olkkonen VM, Gottlieb P, Strassman J, Qiao XY, Bamford DH, Mindich L. In vitro assembly of infectious nucleocapsids of bacteriophage phi 6: formation of a recombinant double-stranded RNA virus. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9173–9177. [PubMed]
  • Olkkonen VM, Ojala PM, Bamford DH. Generation of infectious nucleocapsids by in vitro assembly of the shell protein on to the polymerase complex of the dsRNA bacteriophage phi 6. J Mol Biol. 1991 Apr 5;218(3):569–581. [PubMed]
  • Onodera S, Olkkonen VM, Gottlieb P, Strassman J, Qiao XY, Bamford DH, Mindich L. Construction of a transducing virus from double-stranded RNA bacteriophage phi6: establishment of carrier states in host cells. J Virol. 1992 Jan;66(1):190–196. [PMC free article] [PubMed]
  • Rott ME, Tremaine JH, Rochon DM. Comparison of the 5' and 3' termini of tomato ringspot virus RNA1 and RNA2: evidence for RNA recombination. Virology. 1991 Nov;185(1):468–472. [PubMed]
  • Roychoudhury R, Jay E, Wu R. Terminal labeling and addition of homopolymer tracts to duplex DNA fragments by terminal deoxynucleotidyl transferase. Nucleic Acids Res. 1976 Jan;3(1):101–116. [PMC free article] [PubMed]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PubMed]
  • Semancik JS, Vidaver AK, Van Etten JL. Characterization of segmented double-helical RNA from bacteriophage phi6. J Mol Biol. 1973 Aug 25;78(4):617–625. [PubMed]
  • Sinclair JF, Cohen J, Mindich L. The isolation of suppressible nonsence mutants of bacteriophage phi6. Virology. 1976 Nov;75(1):198–208. [PubMed]
  • Surratt CK, Milan SC, Chamberlin MJ. Spontaneous cleavage of RNA in ternary complexes of Escherichia coli RNA polymerase and its significance for the mechanism of transcription. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7983–7987. [PubMed]
  • Vidaver AK, Koski RK, Van Etten JL. Bacteriophage phi6: a Lipid-Containing Virus of Pseudomonas phaseolicola. J Virol. 1973 May;11(5):799–805. [PMC free article] [PubMed]
  • Messing J, Vieira J. A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene. 1982 Oct;19(3):269–276. [PubMed]
  • Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. [PubMed]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)