Search tips
Search criteria 


Logo of brjcancerBJC HomepageBJC Advance online publicationBJC Current IssueSubmitting an article to BJCWeb feeds
Br J Cancer. 2000 June; 82(12): 1974–1983.
Published online 2000 May 18. doi:  10.1054/bjoc.2000.1146
PMCID: PMC2363243

Expression of transcription factor AP-2α predicts survival in epithelial ovarian cancer


The 52-kDa activator protein (AP)-2 is a DNA-binding transcription factor which has been reported to have growth inhibitory effects in cancer cell lines and in human tumours. In this study the expression of AP-2α was analysed in 303 epithelial ovarian carcinomas by immunohistochemistry (IHC) with a polyclonal AP-2α antibody and its mRNA status was determined by in situ hybridization (ISH) and reverse transcriptase-polymerase chain reaction (RT-PCR). The immunohistochemical expression of AP-2α was correlated with clinicopathological variables, p21/WAF1 protein expression and survival. In normal ovaries, epithelial cells expressed AP-2α protein only in the cytoplasm. In carcinomas nuclear AP-2α expression was observed in 28% of the cases although cytoplasmic expression was more common (51%). The expression of AP-2α varied according to the histological subtype and differentiation. AP-2α and p21/WAF1 expressions did not correlate with each other. Both in univariate (P = 0.002) and multivariate analyses (relative risks (RR) 1.6, 95% confidence interval (CI) 1.13–2.18, P = 0.007) the high cytoplasmic AP-2α expression favoured the overall survival. In contrast, the nuclear AP-2α expression combined with low cytoplasmic expression increased the risk of dying of ovarian cancer (RR = 2.10, 95% CI 1.13–3.83, P = 0.018). The shift in the expression pattern of AP-2α (nuclear vs cytoplasmic) in carcinomas points out to the possibility that this transcription factor may be used by oncogenes in certain histological subtypes. Based on the mRNA analyses, the incomplete expression and translation of AP-2α in ovarian cancer may be due to post-transcriptional regulation. © 2000 Cancer Research Campaign

Keywords: epithelial ovarian cancer, prognosis, AP-2α, p21/WAF1

Full Text

The Full Text of this article is available as a PDF (633K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Anttila MA, Kosma VM, Hongxiu J, Puolakka J, Juhola M, Saarikoski S, Syrjänen K. p21/WAF1 expression as related to p53, cell proliferation and prognosis in epithelial ovarian cancer. Br J Cancer. 1999 Apr;79(11-12):1870–1878. [PMC free article] [PubMed]
  • Bar-Eli M. Molecular mechanisms of melanoma metastasis. J Cell Physiol. 1997 Nov;173(2):275–278. [PubMed]
  • Batsché E, Muchardt C, Behrens J, Hurst HC, Crémisi C. RB and c-Myc activate expression of the E-cadherin gene in epithelial cells through interaction with transcription factor AP-2. Mol Cell Biol. 1998 Jul;18(7):3647–3658. [PMC free article] [PubMed]
  • Bosari S, Viale G, Bossi P, Maggioni M, Coggi G, Murray JJ, Lee AK. Cytoplasmic accumulation of p53 protein: an independent prognostic indicator in colorectal adenocarcinomas. J Natl Cancer Inst. 1994 May 4;86(9):681–687. [PubMed]
  • Bosher JM, Totty NF, Hsuan JJ, Williams T, Hurst HC. A family of AP-2 proteins regulates c-erbB-2 expression in mammary carcinoma. Oncogene. 1996 Oct 17;13(8):1701–1707. [PubMed]
  • Bosher JM, Williams T, Hurst HC. The developmentally regulated transcription factor AP-2 is involved in c-erbB-2 overexpression in human mammary carcinoma. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):744–747. [PubMed]
  • Casey G. The BRCA1 and BRCA2 breast cancer genes. Curr Opin Oncol. 1997 Jan;9(1):88–93. [PubMed]
  • Chen Y, Chen CF, Riley DJ, Allred DC, Chen PL, Von Hoff D, Osborne CK, Lee WH. Aberrant subcellular localization of BRCA1 in breast cancer. Science. 1995 Nov 3;270(5237):789–791. [PubMed]
  • Chiu R, Imagawa M, Imbra RJ, Bockoven JR, Karin M. Multiple cis- and trans-acting elements mediate the transcriptional response to phorbol esters. Nature. 1987 Oct 15;329(6140):648–651. [PubMed]
  • Foulkes WD, Ragoussis J, Stamp GW, Allan GJ, Trowsdale J. Frequent loss of heterozygosity on chromosome 6 in human ovarian carcinoma. Br J Cancer. 1993 Mar;67(3):551–559. [PMC free article] [PubMed]
  • Gilbertson RJ, Perry RH, Kelly PJ, Pearson AD, Lunec J. Prognostic significance of HER2 and HER4 coexpression in childhood medulloblastoma. Cancer Res. 1997 Aug 1;57(15):3272–3280. [PubMed]
  • Goldman SC, Chen CY, Lansing TJ, Gilmer TM, Kastan MB. The p53 signal transduction pathway is intact in human neuroblastoma despite cytoplasmic localization. Am J Pathol. 1996 May;148(5):1381–1385. [PubMed]
  • Hennig G, Löwrick O, Birchmeier W, Behrens J. Mechanisms identified in the transcriptional control of epithelial gene expression. J Biol Chem. 1996 Jan 5;271(1):595–602. [PubMed]
  • Hietala KA, Kosma VM, Syrjänen KJ, Syrjänen SM, Kellokoski JK. Correlation of MIB-1 antigen expression with transcription factors Skn-1, Oct-1, AP-2, and HPV type in cervical intraepithelial neoplasia. J Pathol. 1997 Nov;183(3):305–310. [PubMed]
  • Huhtala P, Chow LT, Tryggvason K. Structure of the human type IV collagenase gene. J Biol Chem. 1990 Jul 5;265(19):11077–11082. [PubMed]
  • Hyman SE, Comb M, Pearlberg J, Goodman HM. An AP-2 element acts synergistically with the cyclic AMP- and phorbol ester-inducible enhancer of the human proenkephalin gene. Mol Cell Biol. 1989 Jan;9(1):321–324. [PMC free article] [PubMed]
  • Imagawa M, Chiu R, Karin M. Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell. 1987 Oct 23;51(2):251–260. [PubMed]
  • Ito Y, Kobayashi T, Takeda T, Komoike Y, Wakasugi E, Tamaki Y, Tsujimoto M, Matsuura N, Monden M. Expression of p21 (WAF1/CIP1) protein in clinical thyroid tissues. Br J Cancer. 1996 Oct;74(8):1269–1274. [PMC free article] [PubMed]
  • Jean D, Gershenwald JE, Huang S, Luca M, Hudson MJ, Tainsky MA, Bar-Eli M. Loss of AP-2 results in up-regulation of MCAM/MUC18 and an increase in tumor growth and metastasis of human melanoma cells. J Biol Chem. 1998 Jun 26;273(26):16501–16508. [PubMed]
  • Kannan P, Buettner R, Chiao PJ, Yim SO, Sarkiss M, Tainsky MA. N-ras oncogene causes AP-2 transcriptional self-interference, which leads to transformation. Genes Dev. 1994 Jun 1;8(11):1258–1269. [PubMed]
  • Karin M, Hunter T. Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr Biol. 1995 Jul 1;5(7):747–757. [PubMed]
  • Karjalainen JM, Kellokoski JK, Eskelinen MJ, Alhava EM, Kosma VM. Downregulation of transcription factor AP-2 predicts poor survival in stage I cutaneous malignant melanoma. J Clin Oncol. 1998 Nov;16(11):3584–3591. [PubMed]
  • Kleijn M, Scheper GC, Voorma HO, Thomas AA. Regulation of translation initiation factors by signal transduction. Eur J Biochem. 1998 May 1;253(3):531–544. [PubMed]
  • Leask A, Byrne C, Fuchs E. Transcription factor AP2 and its role in epidermal-specific gene expression. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7948–7952. [PubMed]
  • Lee W, Haslinger A, Karin M, Tjian R. Activation of transcription by two factors that bind promoter and enhancer sequences of the human metallothionein gene and SV40. Nature. 1987 Jan 22;325(6102):368–372. [PubMed]
  • Lüscher B, Mitchell PJ, Williams T, Tjian R. Regulation of transcription factor AP-2 by the morphogen retinoic acid and by second messengers. Genes Dev. 1989 Oct;3(10):1507–1517. [PubMed]
  • Mitchell PJ, Wang C, Tjian R. Positive and negative regulation of transcription in vitro: enhancer-binding protein AP-2 is inhibited by SV40 T antigen. Cell. 1987 Sep 11;50(6):847–861. [PubMed]
  • Mitchell PJ, Timmons PM, Hébert JM, Rigby PW, Tjian R. Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev. 1991 Jan;5(1):105–119. [PubMed]
  • Moll UM, Riou G, Levine AJ. Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7262–7266. [PubMed]
  • Ropponen KM, Kellokoski JK, Lipponen PK, Pietiläinen T, Eskelinen MJ, Alhava EM, Kosma VM. p22/WAF1 expression in human colorectal carcinoma: association with p53, transcription factor AP-2 and prognosis. Br J Cancer. 1999 Sep;81(1):133–140. [PMC free article] [PubMed]
  • Sato T, Saito H, Morita R, Koi S, Lee JH, Nakamura Y. Allelotype of human ovarian cancer. Cancer Res. 1991 Oct 1;51(19):5118–5122. [PubMed]
  • Soong R, Knowles S, Williams KE, Hammond IG, Wysocki SJ, Iacopetta BJ. Overexpression of p53 protein is an independent prognostic indicator in human endometrial carcinoma. Br J Cancer. 1996 Aug;74(4):562–567. [PMC free article] [PubMed]
  • Sperry A, Jin L, Lloyd RV. Microwave treatment enhances detection of RNA and DNA by in situ hybridization. Diagn Mol Pathol. 1996 Dec;5(4):291–296. [PubMed]
  • Subramaniam M, Hefferan TE, Tau K, Peus D, Pittelkow M, Jalal S, Riggs BL, Roche P, Spelsberg TC. Tissue, cell type, and breast cancer stage-specific expression of a TGF-beta inducible early transcription factor gene. J Cell Biochem. 1998 Feb 1;68(2):226–236. [PubMed]
  • Sugg SL, Ezzat S, Rosen IB, Freeman JL, Asa SL. Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. J Clin Endocrinol Metab. 1998 Nov;83(11):4116–4122. [PubMed]
  • Sun XF, Carstensen JM, Zhang H, Stål O, Wingren S, Hatschek T, Nordenskjöld B. Prognostic significance of cytoplasmic p53 oncoprotein in colorectal adenocarcinoma. Lancet. 1992 Dec 5;340(8832):1369–1373. [PubMed]
  • Sun X, Shimizu H, Yamamoto K. Identification of a novel p53 promoter element involved in genotoxic stress-inducible p53 gene expression. Mol Cell Biol. 1995 Aug;15(8):4489–4496. [PMC free article] [PubMed]
  • Sundfeldt K, Ivarsson K, Carlsson M, Enerbäck S, Janson PO, Brännström M, Hedin L. The expression of CCAAT/enhancer binding protein (C/EBP) in the human ovary in vivo: specific increase in C/EBPbeta during epithelial tumour progression. Br J Cancer. 1999 Mar;79(7-8):1240–1248. [PMC free article] [PubMed]
  • Turner BC, Zhang J, Gumbs AA, Maher MG, Kaplan L, Carter D, Glazer PM, Hurst HC, Haffty BG, Williams T. Expression of AP-2 transcription factors in human breast cancer correlates with the regulation of multiple growth factor signalling pathways. Cancer Res. 1998 Dec 1;58(23):5466–5472. [PubMed]
  • Wakasugi E, Kobayashi T, Tamaki Y, Ito Y, Miyashiro I, Komoike Y, Takeda T, Shin E, Takatsuka Y, Kikkawa N, et al. p21(Waf1/Cip1) and p53 protein expression in breast cancer. Am J Clin Pathol. 1997 Jun;107(6):684–691. [PubMed]
  • Williams T, Admon A, Lüscher B, Tjian R. Cloning and expression of AP-2, a cell-type-specific transcription factor that activates inducible enhancer elements. Genes Dev. 1988 Dec;2(12A):1557–1569. [PubMed]
  • Williamson JA, Bosher JM, Skinner A, Sheer D, Williams T, Hurst HC. Chromosomal mapping of the human and mouse homologues of two new members of the AP-2 family of transcription factors. Genomics. 1996 Jul 1;35(1):262–264. [PubMed]
  • Winning RS, Shea LJ, Marcus SJ, Sargent TD. Developmental regulation of transcription factor AP-2 during Xenopus laevis embryogenesis. Nucleic Acids Res. 1991 Jul 11;19(13):3709–3714. [PMC free article] [PubMed]
  • Zeng YX, Somasundaram K, el-Deiry WS. AP2 inhibits cancer cell growth and activates p21WAF1/CIP1 expression. Nat Genet. 1997 Jan;15(1):78–82. [PubMed]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK