PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of brjcancerBJC HomepageBJC Advance online publicationBJC Current IssueSubmitting an article to BJCWeb feeds
 
Br J Cancer. 1999 March; 79(7-8): 1262–1269.
PMCID: PMC2362258

FasL is more frequently expressed in liver metastases of colorectal cancer than in matched primary carcinomas

Abstract

Colorectal carcinoma cells have recently been shown to express Fas ligand (FasL). This ligand could allow the tumour cells to evade activated tumour-infiltrating lymphocytes (TILs) by inducing their apoptosis and would thus promote tumour survival and possibly metastasis formation. To test this hypothesis in vivo we analysed the expression of FasL mRNA and protein in paired tissue samples of normal colonic mucosa (N), primary colorectal carcinomas (T) and their metastases (M) from a total of 21 patients by four different methods. Additionally, the presence and activation status of infiltrating lymphocytes, which might contribute to the total amount of FasL in the tissue, was determined by semiquantitative reverse transcription–polymerase chain reaction (RT–PCR) in the same samples. The frequency of FasL detection was 30–40% in T and was 60–100% in M, depending on the sensitivity of the method. Simultaneously, the amount of CD25 mRNA, used as a measure of the number of activated TILs, was in 90% of patients lower in M than in T. The increased frequency of FasL detection in liver metastases was therefore not due to the presence of activated TILs. We conclude that metastasizing subpopulations of colorectal tumour cells express FasL more frequently than the primary carcinomas and may be able to eliminate activated TILs in vivo via Fas/FasL-induced apoptosis or other hitherto unknown mechanisms. © 1999 Cancer Research Campaign

Keywords: colorectal carcinoma, progression, metastases, FasL, TILs, immune escape

Full Text

The Full Text of this article is available as a PDF (425K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Ambe K, Mori M, Enjoji M. S-100 protein-positive dendritic cells in colorectal adenocarcinomas. Distribution and relation to the clinical prognosis. Cancer. 1989 Feb 1;63(3):496–503. [PubMed]
  • Barth RJ, Jr, Camp BJ, Martuscello TA, Dain BJ, Memoli VA. The cytokine microenvironment of human colon carcinoma. Lymphocyte expression of tumor necrosis factor-alpha and interleukin-4 predicts improved survival. Cancer. 1996 Sep 15;78(6):1168–1178. [PubMed]
  • Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC. A role for CD95 ligand in preventing graft rejection. Nature. 1995 Oct 19;377(6550):630–632. [PubMed]
  • Brunner T, Mogil RJ, LaFace D, Yoo NJ, Mahboubi A, Echeverri F, Martin SJ, Force WR, Lynch DH, Ware CF, et al. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature. 1995 Feb 2;373(6513):441–444. [PubMed]
  • De Maria R, Boirivant M, Cifone MG, Roncaioli P, Hahne M, Tschopp J, Pallone F, Santoni A, Testi R. Functional expression of Fas and Fas ligand on human gut lamina propria T lymphocytes. A potential role for the acidic sphingomyelinase pathway in normal immunoregulation. J Clin Invest. 1996 Jan 15;97(2):316–322. [PMC free article] [PubMed]
  • Dhein J, Walczak H, Bäumler C, Debatin KM, Krammer PH. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95) Nature. 1995 Feb 2;373(6513):438–441. [PubMed]
  • Ehl S, Hoffmann-Rohrer U, Nagata S, Hengartner H, Zinkernagel R. Different susceptibility of cytotoxic T cells to CD95 (Fas/Apo-1) ligand-mediated cell death after activation in vitro versus in vivo. J Immunol. 1996 Apr 1;156(7):2357–2360. [PubMed]
  • French LE, Tschopp J. Constitutive Fas ligand expression in several non-lymphoid mouse tissues: implications for immune-protection and cell turnover. Behring Inst Mitt. 1996 Oct;(97):156–160. [PubMed]
  • French LE, Hahne M, Viard I, Radlgruber G, Zanone R, Becker K, Müller C, Tschopp J. Fas and Fas ligand in embryos and adult mice: ligand expression in several immune-privileged tissues and coexpression in adult tissues characterized by apoptotic cell turnover. J Cell Biol. 1996 Apr;133(2):335–343. [PMC free article] [PubMed]
  • Galle PR, Hofmann WJ, Walczak H, Schaller H, Otto G, Stremmel W, Krammer PH, Runkel L. Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage. J Exp Med. 1995 Nov 1;182(5):1223–1230. [PMC free article] [PubMed]
  • Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science. 1995 Nov 17;270(5239):1189–1192. [PubMed]
  • Hahne M, Rimoldi D, Schröter M, Romero P, Schreier M, French LE, Schneider P, Bornand T, Fontana A, Lienard D, et al. Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science. 1996 Nov 22;274(5291):1363–1366. [PubMed]
  • Kang SM, Schneider DB, Lin Z, Hanahan D, Dichek DA, Stock PG, Baekkeskov S. Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nat Med. 1997 Jul;3(7):738–743. [PubMed]
  • Kemmner W, Schlag P, Brossmer R. A rapid and simple procedure for dissociation of tumor tissue from the human colon. J Cancer Res Clin Oncol. 1987;113(4):400–401. [PubMed]
  • Möller P, Koretz K, Leithäuser F, Brüderlein S, Henne C, Quentmeier A, Krammer PH. Expression of APO-1 (CD95), a member of the NGF/TNF receptor superfamily, in normal and neoplastic colon epithelium. Int J Cancer. 1994 May 1;57(3):371–377. [PubMed]
  • Mulder WM, Bloemena E, Stukart MJ, Kummer JA, Wagstaff J, Scheper RJ. T cell receptor-zeta and granzyme B expression in mononuclear cell infiltrates in normal colon mucosa and colon carcinoma. Gut. 1997 Jan;40(1):113–119. [PMC free article] [PubMed]
  • Nagata S, Golstein P. The Fas death factor. Science. 1995 Mar 10;267(5203):1449–1456. [PubMed]
  • Niehans GA, Brunner T, Frizelle SP, Liston JC, Salerno CT, Knapp DJ, Green DR, Kratzke RA. Human lung carcinomas express Fas ligand. Cancer Res. 1997 Mar 15;57(6):1007–1012. [PubMed]
  • O'Connell J, O'Sullivan GC, Collins JK, Shanahan F. The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med. 1996 Sep 1;184(3):1075–1082. [PMC free article] [PubMed]
  • Oshimi Y, Oda S, Honda Y, Nagata S, Miyazaki S. Involvement of Fas ligand and Fas-mediated pathway in the cytotoxicity of human natural killer cells. J Immunol. 1996 Oct 1;157(7):2909–2915. [PubMed]
  • Seino K, Kayagaki N, Okumura K, Yagita H. Antitumor effect of locally produced CD95 ligand. Nat Med. 1997 Feb;3(2):165–170. [PubMed]
  • Shimizu Y, Watanabe A, Whiteside TL. Memory T-lymphocytes are the main population of tumor-infiltrating lymphocytes obtained from human primary liver tumors. J Hepatol. 1992 Sep;16(1-2):197–202. [PubMed]
  • Shiraki K, Tsuji N, Shioda T, Isselbacher KJ, Takahashi H. Expression of Fas ligand in liver metastases of human colonic adenocarcinomas. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6420–6425. [PubMed]
  • Strand S, Hofmann WJ, Hug H, Müller M, Otto G, Strand D, Mariani SM, Stremmel W, Krammer PH, Galle PR. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells--a mechanism of immune evasion? Nat Med. 1996 Dec;2(12):1361–1366. [PubMed]
  • Suda T, Takahashi T, Golstein P, Nagata S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell. 1993 Dec 17;75(6):1169–1178. [PubMed]
  • Walker PR, Saas P, Dietrich PY. Role of Fas ligand (CD95L) in immune escape: the tumor cell strikes back. J Immunol. 1997 May 15;158(10):4521–4524. [PubMed]
  • Zeytun A, Hassuneh M, Nagarkatti M, Nagarkatti PS. Fas-Fas ligand-based interactions between tumor cells and tumor-specific cytotoxic T lymphocytes: a lethal two-way street. Blood. 1997 Sep 1;90(5):1952–1959. [PubMed]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK