PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
 
Mol Cell Biol. Nov 1997; 17(11): 6609–6617.
PMCID: PMC232514
Interaction and functional collaboration of p300 and C/EBPbeta.
S Mink, B Haenig, and K H Klempnauer
Hans Spemann Laboratory, Max Planck Institute for Immunobiology, Freiburg, Germany.
Abstract
Transcriptional coactivators such as p300 and CREB-binding protein (CBP) function as important elements in the transcription factor network, linking individual transactivators via protein-protein interactions to the basal transcriptional machinery. We have investigated whether p300 plays a role in transactivation mediated by C/EBPbeta, a conserved member of the C/EBP family. We show that C/EBPbeta-dependent transactivation is strongly inhibited by adenovirus E1A but not by E1A mutants defective in p300 binding. Ectopic expression of p300 reverses the E1A-dependent inhibition and increases the transactivation potential of C/EBPbeta. Furthermore, we show that C/EBPbeta and p300 interact with each other and demonstrate that the sequences responsible for interaction map to the E1A binding region of p300 and the amino terminus of C/EBPbeta. Finally, we show that the minimal C/EBPbeta binding site of p300 acts as a dominant-negative inhibitor of C/EBPbeta. These observations identify p300 as a bona fide coactivator for C/EBPbeta. C/EBPbeta is highly expressed in the myelomonocytic lineage of the hematopoietic system and cooperates with Myb to activate mim-1, a gene specifically expressed during myelomonocytic differentiation. Recent evidence has shown that Myb recruits CBP (and presumably p300) as a coactivator and, in contrast to C/EBPbeta, interacts with the CREB binding site of p300-CBP. We show that p300 not only stimulates the activity of Myb and C/EBPbeta individually but also increases the synergy between them. Thus, our results reveal a novel function of p300: in addition to linking specific transcription factors to the basal transcriptional machinery, p300 also mediates the cooperation between transactivators interacting with different domains of p300.
Articles from Molecular and Cellular Biology are provided here courtesy of
American Society for Microbiology (ASM)