PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of molcellbPermissionsJournals.ASM.orgJournalMCB ArticleJournal InfoAuthorsReviewers
 
Mol Cell Biol. Jan 1995; 15(1): 488–496.
PMCID: PMC231997
Lack of an effect of the efficiency of RNA 3'-end formation on the efficiency of removal of either the final or the penultimate intron in intact cells.
D Nesic, J Zhang, and L E Maquat
Department of Human Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263.
Abstract
Evidence exists from studies using intact cells that intron removal can be influenced by the reactivity of upstream and downstream splice sites and that cleavage and polyadenylation can be influenced by the reactivity of upstream splice sites. These results indicate that sequences within 3'-terminal introns can function in the removal of upstream introns as well as the formation of RNA 3' ends. Evidence from studies using intact cells for an influence of RNA 3'-end formation on intron removal is lacking. We report here that mutations within polyadenylation sequences that either decrease or increase the efficiency of RNA 3'-end formation have no effect on the efficiencies with which either the 3'-terminal or the penultimate intron is removed by splicing. Northern (RNA) blot hybridization, RNase mapping, and an assay that couples reverse transcription and PCR were used to analyze the effects of deletions and a substitution of the polyadenylation sequences within the human gene for triosephosphate isomerase (TPI). TPI pre-mRNA harbors six introns that are constitutively removed by splicing. Relative to normal levels, each of the deletions was found to reduce the nuclear and cytoplasmic levels of TPI mRNA, increase the nuclear level of unprocessed RNA 3' ends, and decrease the nuclear level of processed RNA 3' ends. The simplest interpretation of these data indicates that (i) the rate of 3'-end formation normally limits the amount of mRNA produced and (ii) the deletions decrease and the substitution increases the efficiency of RNA 3'-end formation. While each of the deletions and the substitution altered the absolute levels of intron 6-containing, intron 5-containing, intron 6-free, and intron 5-free RNAs, in no case was there an abnormal ratio of intron-containing to intron-free RNA for either intron. Therefore, at least for TPI RNA, while the efficiency of removal of the 3'-terminal intron influences the efficiency of removal of either the 3'-end formation, the efficiency of RNA 3'-end formation does not influence the efficiency of removal of either the 3'-terminal or penultimate intron. The dependence of TPI RNA 3'-end formation on splicing may reflect the suboptimal strengths of the corresponding regulatory sequences and may function to ensure that TPI pre-mRNA is not released from the chromatin template until it has formed a complex with spliceosomes. If so, then the independence of TPI RNA splicing on 3'-end formation may be rationalized by the lack of a comparable function.
Full Text
The Full Text of this article is available as a PDF (424K).
Articles from Molecular and Cellular Biology are provided here courtesy of
American Society for Microbiology (ASM)