PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
 
J Cell Biol. 1993 December 2; 123(6): 1777–1788.
PMCID: PMC2290891

Occludin: a novel integral membrane protein localizing at tight junctions

Abstract

Recently, we found that ZO-1, a tight junction-associated protein, was concentrated in the so called isolated adherens junction fraction from the liver (Itoh, M., A. Nagafuchi, S. Yonemura, T. Kitani-Yasuda, Sa. Tsukita, and Sh. Tsukita. 1993. J. Cell Biol. 121:491-502). Using this fraction derived from chick liver as an antigen, we obtained three monoclonal antibodies specific for a approximately 65-kD protein in rats. This antigen was not extractable from plasma membranes without detergent, suggesting that it is an integral membrane protein. Immunofluorescence and immunoelectron microscopy with these mAbs showed that this approximately 65-kD membrane protein was exclusively localized at tight junctions of both epithelial and endothelial cells: at the electron microscopic level, the labels were detected directly over the points of membrane contact in tight junctions. To further clarify the nature and structure of this membrane protein, we cloned and sequenced its cDNA. We found that the cDNA encoded a 504-amino acid polypeptide with 55.9 kDa. A search of the data base identified no proteins with significant homology to this membrane protein. A most striking feature of its primary structure was revealed by a hydrophilicity plot: four putative membrane-spanning segments were included in the NH2-terminal half. This hydrophilicity plot was very similar to that of connexin, an integral membrane protein in gap junctions. These findings revealed that an integral membrane protein localizing at tight junctions is now identified, which we designated as "occludin."

Full Text

The Full Text of this article is available as a PDF (3.3M).

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press