PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
 
J Cell Biol. 1992 October 1; 119(1): 55–68.
PMCID: PMC2289639

Mutation of a putative sperm membrane protein in Caenorhabditis elegans prevents sperm differentiation but not its associated meiotic divisions

Abstract

Spermatogenesis in the nematode Caenorhabditis elegans uses unusual organelles, called the fibrous body-membranous organelle (FB-MO) complexes, to prepackage and deliver macromolecules to spermatids during cytokinesis that accompanies the second meiotic division. Mutations in the spe-4 (spermatogenesis-defective) gene disrupt these organelles and prevent cytokinesis during spermatogenesis, but do not prevent completion of the meiotic nuclear divisions that normally accompany spermatid formation. We report an ultrastructural analysis of spe-4 mutant sperm where the normally close association of the FB's with the MO's and the double layered membrane surrounding the FB's are both defective. The internal membrane structure of the MO's is also disrupted in spe-4 mutant sperm. Although sperm morphogenesis in spe-4 mutants arrests prior to the formation of spermatids, meiosis can apparently be completed so that haploid nuclei reside in an arrested spermatocyte. We have cloned the spe-4 gene in order to understand its role during spermatogenesis and the molecular basis of how mutation of this gene disrupts this process. The spe-4 gene encodes an approximately 1.5-kb mRNA that is expressed during spermatogenesis, and the sequence of this gene suggests that it encodes an integral membrane protein. These data suggest that mutation of an integral membrane protein within FB-MO complexes disrupts morphogenesis and prevents formation of spermatids but does not affect completion of the meiotic nuclear divisions in C. elegans sperm.

Full Text

The Full Text of this article is available as a PDF (3.2M).

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press