PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of molmedLink to Publisher's site
 
Mol Med. 1998 February; 4(2): 96–108.
PMCID: PMC2230307

Molecular characterization of a dual endothelin-1/Angiotensin II receptor.

Abstract

BACKGROUND: The molecular recognition theory (MRT) provides a conceptual framework that could explain the evolution of intermolecular and intramolecular interaction of peptides and proteins. As such, it predicts that binding sites of peptide hormones, and its receptor binding sites were originally encoded by and evolved from complementary strands of genomic DNA. MATERIALS AND METHODS: On the basis of principles underlying the MRT, we screened a rat brain complementary DNA library using an AngII followed by an endothelin-1 (ET-1) antisense oligonucleotide probe, expecting to isolate potential cognate receptors. RESULTS: An identical cDNA clone was isolated independently from both the AngII and ET-1 oligonucleotide screenings. Structural analysis revealed a receptor polypeptide containing a single predicted transmembrane region with distinct ET-1 and AngII putative binding domains. Functional analysis demonstrated ET-1- and AngII-specific binding as well as ET-1- and AngII-induced coupling to a Ca2+ mobilizing transduction system. Amino acid substitutions within the predicted ET-1 binding domain obliterate ET-1 binding while preserving AngII binding, thus defining the structural determinants of ET-1 binding within the dual ET-1/AngII receptor, as well as corroborating the dual nature of the receptor. CONCLUSIONS: Elucidation of the dual ET-1/AngII receptor provides further molecular genetic evidence in support of the molecular recognition theory and identifies for the first time a molecular link between the ET-1 and AngII hormonal systems that could underlie observed similar physiological responses elicited by ET-1 and AngII in different organ systems. The prominent expression of the ET-1/AngII receptor mRNA in brain and heart tissues suggests an important role in cardiovascular function in normal and pathophysiological states.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.8M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Blalock JE. Genetic origins of protein shape and interaction rules. Nat Med. 1995 Sep;1(9):876–878. [PubMed]
  • Bost KL, Smith EM, Blalock JE. Similarity between the corticotropin (ACTH) receptor and a peptide encoded by an RNA that is complementary to ACTH mRNA. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1372–1375. [PubMed]
  • de Souza SJ, Brentani R. Collagen binding site in collagenase can be determined using the concept of sense-antisense peptide interactions. J Biol Chem. 1992 Jul 5;267(19):13763–13767. [PubMed]
  • Baranyi L, Campbell W, Ohshima K, Fujimoto S, Boros M, Okada H. The antisense homology box: a new motif within proteins that encodes biologically active peptides. Nat Med. 1995 Sep;1(9):894–901. [PubMed]
  • Martins VR, Graner E, Garcia-Abreu J, de Souza SJ, Mercadante AF, Veiga SS, Zanata SM, Neto VM, Brentani RR. Complementary hydropathy identifies a cellular prion protein receptor. Nat Med. 1997 Dec;3(12):1376–1382. [PubMed]
  • Rasmussen UB, Hesch RD. On antisense peptides: the parathyroid hormone as an experimental example and a critical theoretical view. Biochem Biophys Res Commun. 1987 Dec 31;149(3):930–938. [PubMed]
  • de Gasparo M, Whitebread S, Einsle K, Heusser C. Are the antibodies to a peptide complementary to angiotensin II useful to isolate the angiotensin II receptor? Biochem J. 1989 Jul 1;261(1):310–311. [PubMed]
  • Goldstein A, Brutlag DL. Is there a relationship between DNA sequences encoding peptide ligands and their receptors? Proc Natl Acad Sci U S A. 1989 Jan;86(1):42–45. [PubMed]
  • Kelly JM, Trinder D, Phillips PA, Casley DJ, Kemp B, Mooser V, Johnston CI. Vasopressin antisense peptide interactions with the V1 receptor. Peptides. 1990 Jul-Aug;11(4):857–862. [PubMed]
  • Jurzak M, Pavo I, Fahrenholz F. Lack of interaction of vasopressin with its antisense peptides: a functional and immunological study. J Recept Res. 1993;13(5):881–902. [PubMed]
  • Ruiz-Opazo N, Akimoto K, Herrera VL. Identification of a novel dual angiotensin II/vasopressin receptor on the basis of molecular recognition theory. Nat Med. 1995 Oct;1(10):1074–1081. [PubMed]
  • Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. [PubMed]
  • Ohkubo H, Kageyama R, Ujihara M, Hirose T, Inayama S, Nakanishi S. Cloning and sequence analysis of cDNA for rat angiotensinogen. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2196–2200. [PubMed]
  • Brown RD, Berger KD, Taylor P. Alpha 1-adrenergic receptor activation mobilizes cellular Ca2+ in a muscle cell line. J Biol Chem. 1984 Jun 25;259(12):7554–7562. [PubMed]
  • Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. [PubMed]
  • Engelman DM, Steitz TA, Goldman A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem. 1986;15:321–353. [PubMed]
  • Adams GA, Rose JK. Structural requirements of a membrane-spanning domain for protein anchoring and cell surface transport. Cell. 1985 Jul;41(3):1007–1015. [PubMed]
  • Kemp BE, Pearson RB. Protein kinase recognition sequence motifs. Trends Biochem Sci. 1990 Sep;15(9):342–346. [PubMed]
  • Lytle C, Forbush B., 3rd The Na-K-Cl cotransport protein of shark rectal gland. II. Regulation by direct phosphorylation. J Biol Chem. 1992 Dec 15;267(35):25438–25443. [PubMed]
  • Trowbridge IS. Endocytosis and signals for internalization. Curr Opin Cell Biol. 1991 Aug;3(4):634–641. [PubMed]
  • Peters C, Braun M, Weber B, Wendland M, Schmidt B, Pohlmann R, Waheed A, von Figura K. Targeting of a lysosomal membrane protein: a tyrosine-containing endocytosis signal in the cytoplasmic tail of lysosomal acid phosphatase is necessary and sufficient for targeting to lysosomes. EMBO J. 1990 Nov;9(11):3497–3506. [PubMed]
  • Simonson MS, Dunn MJ. Cellular signaling by peptides of the endothelin gene family. FASEB J. 1990 Sep;4(12):2989–3000. [PubMed]
  • Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE. Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature. 1991 May 16;351(6323):233–236. [PubMed]
  • Sasaki K, Yamano Y, Bardhan S, Iwai N, Murray JJ, Hasegawa M, Matsuda Y, Inagami T. Cloning and expression of a complementary DNA encoding a bovine adrenal angiotensin II type-1 receptor. Nature. 1991 May 16;351(6323):230–233. [PubMed]
  • Sandberg K, Ji H, Clark AJ, Shapira H, Catt KJ. Cloning and expression of a novel angiotensin II receptor subtype. J Biol Chem. 1992 May 15;267(14):9455–9458. [PubMed]
  • Kambayashi Y, Bardhan S, Takahashi K, Tsuzuki S, Inui H, Hamakubo T, Inagami T. Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem. 1993 Nov 25;268(33):24543–24546. [PubMed]
  • Sakurai T, Yanagisawa M, Takuwa Y, Miyazaki H, Kimura S, Goto K, Masaki T. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature. 1990 Dec 20;348(6303):732–735. [PubMed]
  • Lin HY, Kaji EH, Winkel GK, Ives HE, Lodish HF. Cloning and functional expression of a vascular smooth muscle endothelin 1 receptor. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3185–3189. [PubMed]
  • Karne S, Jayawickreme CK, Lerner MR. Cloning and characterization of an endothelin-3 specific receptor (ETC receptor) from Xenopus laevis dermal melanophores. J Biol Chem. 1993 Sep 5;268(25):19126–19133. [PubMed]
  • Powell-Jackson FD, Macgregor J. Radioimmunoassay of angiotensin II in the rat. J Endocrinol. 1976 Jan;68(1):175–176. [PubMed]
  • Battistini B, D'Orléans-Juste P, Sirois P. Endothelins: circulating plasma levels and presence in other biologic fluids. Lab Invest. 1993 Jun;68(6):600–628. [PubMed]
  • Egido J. Vasoactive hormones and renal sclerosis. Kidney Int. 1996 Feb;49(2):578–597. [PubMed]
  • Gómez-Garre D, Ruiz-Ortega M, Ortego M, Largo R, López-Armada MJ, Plaza JJ, González E, Egido J. Effects and interactions of endothelin-1 and angiotensin II on matrix protein expression and synthesis and mesangial cell growth. Hypertension. 1996 Apr;27(4):885–892. [PubMed]
  • Hashido K, Gamou T, Adachi M, Tabuchi H, Watanabe T, Furuichi Y, Miyamoto C. Truncation of N-terminal extracellular or C-terminal intracellular domains of human ETA receptor abrogated the binding activity to ET-1. Biochem Biophys Res Commun. 1992 Sep 30;187(3):1241–1248. [PubMed]
  • Adachi M, Yang YY, Trzeciak A, Furuichi Y, Miyamoto C. Identification of a domain of ETA receptor required for ligand binding. FEBS Lett. 1992 Oct 19;311(2):179–183. [PubMed]
  • Hashido K, Adachi M, Gamou T, Watanabe T, Furuichi Y, Miyamoto C. Identification of specific intracellular domains of the human ETA receptor required for ligand binding and signal transduction. Cell Mol Biol Res. 1993;39(1):3–12. [PubMed]
  • Kimura S, Kasuya Y, Sawamura T, Shinmi O, Sugita Y, Yanagisawa M, Goto K, Masaki T. Structure-activity relationships of endothelin: importance of the C-terminal moiety. Biochem Biophys Res Commun. 1988 Nov 15;156(3):1182–1186. [PubMed]
  • Maggi CA, Giuliani S, Patacchini R, Santicioli P, Rovero P, Giachetti A, Meli A. The C-terminal hexapeptide, endothelin-(16-21), discriminates between different endothelin receptors. Eur J Pharmacol. 1989 Jul 4;166(1):121–122. [PubMed]
  • Takai M, Umemura I, Yamasaki K, Watakabe T, Fujitani Y, Oda K, Urade Y, Inui T, Yamamura T, Okada T. A potent and specific agonist, Suc-[Glu9,Ala11,15]-endothelin-1(8-21), IRL 1620, for the ETB receptor. Biochem Biophys Res Commun. 1992 Apr 30;184(2):953–959. [PubMed]
  • Herrera VL, Chobanian AV, Ruiz-Opazo N. Isoform-specific modulation of Na+, K+-ATPase alpha-subunit gene expression in hypertension. Science. 1988 Jul 8;241(4862):221–223. [PubMed]

Articles from Molecular Medicine are provided here courtesy of The Feinstein Institute for Medical Research at North Shore LIJ