Search tips
Search criteria 


Logo of molmedLink to Publisher's site
Mol Med. 1995 September; 1(6): 678–689.
PMCID: PMC2229973

Delta opioidmimetic antagonists: prototypes for designing a new generation of ultraselective opioid peptides.


BACKGROUND: Tyr-Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) and Tyr-Tic-Ala were the first peptides with delta opioid antagonist activity lacking Phe, considered essential for opioid activity based on the N-terminal tripeptide sequence (Tyr-D-Xaa-Phe) of amphibian skin opioids. Analogs were then designed to restrain the rotational flexibility of Tyr by the substitution of 2,6-dimethyl-L-tyrosine (Dmt). MATERIALS AND METHODS: Tyr and Dmt peptides were synthesized by solid phase and solution methods using Fmoc technology or condensing Boc-Dmt-OH or Boc-Tyr(But)-OH with H-L-Tic-OBut or H-D-Tic-OBut, respectively. Peptides were purified (> 99%) by HPLC and characteristics determined by 1H-NMR, FAB-MS, melting point, TLC, and amino acid analyses. RESULTS: H-Dmt-Tic-OH had high affinity (Ki delta = 0.022 nM) and extraordinary selectivity (Ki mu/Ki delta = 150,000); H-Dmt-Tic-Ala-OH had a Ki delta = 0.29 nM and delta selectivity = 20,000. Affinity and selectivity increased 8700- and 1000-fold relative to H-Tyr-Tic-OH, respectively. H-Dmt-Tic-OH and H-Dmt-Tic-NH2 fitted one-site receptor binding models (eta = 0.939-0.987), while H-Dmt-Tic-ol, H-Dmt-Tic-Ala-OH and H-Dmt-Tic-Ala-NH2 best fitted two-site models (eta = 0.708-0.801, F 18.9-26.0, p < 0.0001). Amidation increased mu affinity by 10- to 100-fold and acted synergistically with D-Tic2 to reverse selectivity (delta-->mu). Dmt-Tic di- and tripeptides exhibited delta antagonist bioactivity (Ke = 4-66 nM) with mouse vas deferens and lacked agonist mu activity (> 10 microM) in guinea-pig ileum preparations. Dmt-Tic analogs weakly interacted with kappa receptors in the 1 to > 20 microM range. CONCLUSIONS: Dmt-Tic opioidmimetic peptides represent a highly potent class of opioid peptide antagonists with greater potency than the nonopioid delta antagonist naltrindole and have potential application as clinical and therapeutic compounds.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.6M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Hruby VJ, Gehrig CA. Recent developments in the design of receptor specific opioid peptides. Med Res Rev. 1989 Jul-Sep;9(3):343–401. [PubMed]
  • Erspamer V. The opioid peptides of the amphibian skin. Int J Dev Neurosci. 1992;10(1):3–30. [PubMed]
  • Sagan S, Amiche M, Delfour A, Camus A, Mor A, Nicolas P. Differential contribution of C-terminal regions of dermorphin and dermenkephalin to opioid-sites selection and binding potency. Biochem Biophys Res Commun. 1989 Sep 15;163(2):726–732. [PubMed]
  • Sagan S, Amiche M, Delfour A, Mor A, Camus A, Nicolas P. Molecular determinants of receptor affinity and selectivity of the natural delta-opioid agonist, dermenkephalin. J Biol Chem. 1989 Oct 15;264(29):17100–17106. [PubMed]
  • Balboni G, Marastoni M, Picone D, Salvadori S, Tancredi T, Temussi PA, Tomatis R. New features of the delta opioid receptor: conformational properties of deltorphin I analogues. Biochem Biophys Res Commun. 1990 Jun 15;169(2):617–622. [PubMed]
  • Lazarus LH, Salvadori S, Tomatis R, Wilson WE. Opioid receptor selectivity reversal in deltorphin tetrapeptide analogues. Biochem Biophys Res Commun. 1991 Jul 15;178(1):110–115. [PubMed]
  • Melchiorri P, Negri L, Falconieri-Erspamer G, Severini C, Corsi R, Soaje M, Erspamer V, Barra D. Structure-activity relationships of the delta-opioid-selective agonists, deltorphins. Eur J Pharmacol. 1991 Mar 26;195(2):201–207. [PubMed]
  • Marastoni M, Tomatis R, Balboni G, Salvadori S, Lazarus LH. On the degradation of the deltorphin peptides by plasma and brain homogenate. Farmaco. 1991 Nov;46(11):1273–1279. [PubMed]
  • Sagan S, Charpentier S, Delfour A, Amiche M, Nicolas P. The aspartic acid in deltorphin I and dermenkephalin promotes targeting to delta-opioid receptor independently of receptor binding. Biochem Biophys Res Commun. 1992 Sep 30;187(3):1203–1210. [PubMed]
  • Schiller PW, Nguyen TM, Chung NN, Lemieux C. Dermorphin analogues carrying an increased positive net charge in their "message" domain display extremely high mu opioid receptor selectivity. J Med Chem. 1989 Mar;32(3):698–703. [PubMed]
  • Schiller PW, Weltrowska G, Nguyen TM, Lemieux C, Chung NN, Marsden BJ, Wilkes BC. Conformational restriction of the phenylalanine residue in a cyclic opioid peptide analogue: effects on receptor selectivity and stereospecificity. J Med Chem. 1991 Oct;34(10):3125–3132. [PubMed]
  • Mosberg HI, Kroona HB. Incorporation of a novel conformationally restricted tyrosine analog into a cyclic, delta opioid receptor selective tetrapeptide (JOM-13) enhances delta receptor binding affinity and selectivity. J Med Chem. 1992 Nov 13;35(23):4498–4500. [PubMed]
  • Lazarus LH, Salvadori S, Balboni G, Tomatis R, Wilson WE. Stereospecificity of amino acid side chains in deltorphin defines binding to opioid receptors. J Med Chem. 1992 Apr 3;35(7):1222–1227. [PubMed]
  • Salvadori S, Bryant SD, Bianchi C, Balboni G, Scaranari V, Attila M, Lazarus LH. Phe3-substituted analogues of deltorphin C. Spatial conformation and topography of the aromatic ring in peptide recognition by delta opioid receptors. J Med Chem. 1993 Nov 26;36(24):3748–3756. [PubMed]
  • Schiller PW, Nguyen TM, Weltrowska G, Wilkes BC, Marsden BJ, Lemieux C, Chung NN. Differential stereochemical requirements of mu vs. delta opioid receptors for ligand binding and signal transduction: development of a class of potent and highly delta-selective peptide antagonists. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11871–11875. [PubMed]
  • Schiller PW, Weltrowska G, Nguyen TM, Wilkes BC, Chung NN, Lemieux C. TIPP[psi]: a highly potent and stable pseudopeptide delta opioid receptor antagonist with extraordinary delta selectivity. J Med Chem. 1993 Oct 15;36(21):3182–3187. [PubMed]
  • Temussi PA, Salvadori S, Amodeo P, Bianchi C, Guerrini R, Tomatis R, Lazarus LH, Picone D, Tancredi T. Selective opioid dipeptides. Biochem Biophys Res Commun. 1994 Feb 15;198(3):933–939. [PubMed]
  • Chandrakumar NS, Stapelfeld A, Beardsley PM, Lopez OT, Drury B, Anthony E, Savage MA, Williamson LN, Reichman M. Analogs of the delta opioid receptor selective cyclic peptide [2-D-penicillamine,5-D-penicillamine]-enkephalin: 2',6'-dimethyltyrosine and Gly3-Phe4 amide bond isostere substitutions. J Med Chem. 1992 Aug 7;35(16):2928–2938. [PubMed]
  • Pitzele BS, Hamilton RW, Kudla KD, Tsymbalov S, Stapelfeld A, Savage MA, Clare M, Hammond DL, Hansen DW., Jr Enkephalin analogs as systemically active antinociceptive agents: O- and N-alkylated derivatives of the dipeptide amide L-2,6-dimethyltyrosyl-N-(3-phenylpropyl)-D-alaninamide. J Med Chem. 1994 Apr 1;37(7):888–896. [PubMed]
  • Hansen DW, Jr, Stapelfeld A, Savage MA, Reichman M, Hammond DL, Haaseth RC, Mosberg HI. Systemic analgesic activity and delta-opioid selectivity in [2,6-dimethyl-Tyr1,D-Pen2,D-Pen5]enkephalin. J Med Chem. 1992 Feb 21;35(4):684–687. [PubMed]
  • Qian X, Kövér KE, Shenderovich MD, Lou BS, Misicka A, Zalewska T, Horváth R, Davis P, Bilsky EJ, Porreca F, et al. Newly discovered stereochemical requirements in the side-chain conformation of delta opioid agonists for recognizing opioid delta receptors. J Med Chem. 1994 Jun 10;37(12):1746–1757. [PubMed]
  • Chandrakumar NS, Yonan PK, Stapelfeld A, Savage M, Rorbacher E, Contreras PC, Hammond D. Preparation and opioid activity of analogues of the analgesic dipeptide 2,6-dimethyl-L-tyrosyl-N-(3-phenylpropyl)-D-alaninamide. J Med Chem. 1992 Jan 24;35(2):223–233. [PubMed]
  • Costopanagiotis AA, Preston J, Weinstein B. Amino acids and peptides. V. Synthesis of the C-terminal tripeptide sequence (A27-A29) of glucagon. J Org Chem. 1966 Oct;31(10):3398–3400. [PubMed]
  • Marsden BJ, Nguyen TM, Schiller PW. Spontaneous degradation via diketopiperazine formation of peptides containing a tetrahydroisoquinoline-3-carboxylic acid residue in the 2-position of the peptide sequence. Int J Pept Protein Res. 1993 Mar;41(3):313–316. [PubMed]
  • Lazarus LH, Wilson WE, de Castiglione R, Guglietta A. Dermorphin gene sequence peptide with high affinity and selectivity for delta-opioid receptors. J Biol Chem. 1989 Feb 25;264(6):3047–3050. [PubMed]
  • Corbett AD, Paterson SJ, McKnight AT, Magnan J, Kosterlitz HW. Dynorphin and dynorphin are ligands for the kappa-subtype of opiate receptor. Nature. 1982 Sep 2;299(5878):79–81. [PubMed]
  • Standifer KM, Cheng J, Brooks AI, Honrado CP, Su W, Visconti LM, Biedler JL, Pasternak GW. Biochemical and pharmacological characterization of mu, delta and kappa 3 opioid receptors expressed in BE(2)-C neuroblastoma cells. J Pharmacol Exp Ther. 1994 Sep;270(3):1246–1255. [PubMed]
  • Webster JL, Polgar WE, Brandt SR, Berzetei-Gurske IP, Toll L. Comparison of kappa 2-opioid receptors in guinea pig brain and guinea pig ileum membranes. Eur J Pharmacol. 1993 Feb 9;231(2):251–258. [PubMed]
  • Rodriguez FD, Bardaji E, Traynor JR. Differential effects of Mg2+ and other divalent cations on the binding of tritiated opioid ligands. J Neurochem. 1992 Aug;59(2):467–472. [PubMed]
  • Snyder KR, Story SC, Heidt ME, Murray TF, DeLander GE, Aldrich JV. Effect of modification of the basic residues of dynorphin A-(1-13) amide on kappa opioid receptor selectivity and opioid activity. J Med Chem. 1992 Nov 13;35(23):4330–4333. [PubMed]
  • Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. [PubMed]
  • Attila M, Salvadori S, Balboni G, Bryant SD, Lazarus LH. Synthesis and receptor binding analysis of dermorphin hepta-, hexa- and pentapeptide analogues. Evidence for one- and two-side binding models for the mu-opioid receptor. Int J Pept Protein Res. 1993 Dec;42(6):550–559. [PubMed]
  • Bryant SD, Attila M, Salvadori S, Guerrini R, Lazarus LH. Molecular dynamics conformations of deltorphin analogues advocate delta opioid binding site models. Pept Res. 1994 Jul-Aug;7(4):175–184. [PubMed]
  • Kosterlitz HW, Lees GM, Wallis DI, Watt AJ. Non-specific inhibitory effects of morphine-like drugs on transmission in the superior cervical ganglion and guinea-pig isolated ileum. Br J Pharmacol. 1968 Nov;34(3):691P–692P. [PMC free article] [PubMed]
  • Schild HO. pA, a new scale for the measurement of drug antagonism. 1947. Br J Pharmacol. 1997 Feb;120(4 Suppl):29–28. [PMC free article] [PubMed]
  • Collin E, Cesselin F. Neurobiological mechanisms of opioid tolerance and dependence. Clin Neuropharmacol. 1991 Dec;14(6):465–488. [PubMed]
  • Lazarus LH, Salvadori S, Santagada V, Tomatis R, Wilson WE. Function of negative charge in the "address domain" of deltorphins. J Med Chem. 1991 Apr;34(4):1350–1355. [PubMed]
  • Charpentier S, Sagan S, Delfour A, Nicolas P. Dermenkephalin and deltorphin I reveal similarities within ligand-binding domains of mu- and delta-opioid receptors and an additional address subsite on the delta-receptor. Biochem Biophys Res Commun. 1991 Sep 30;179(3):1161–1168. [PubMed]
  • Lazarus LH, Salvadori S, Attila M, Grieco P, Bundy DM, Wilson WE, Tomatis R. Interaction of deltorphin with opioid receptors: molecular determinants for affinity and selectivity. Peptides. 1993 Jan-Feb;14(1):21–28. [PubMed]
  • Portoghese PS. Bivalent ligands and the message-address concept in the design of selective opioid receptor antagonists. Trends Pharmacol Sci. 1989 Jun;10(6):230–235. [PubMed]
  • Schwyzer R. Molecular mechanism of opioid receptor selection. Biochemistry. 1986 Oct 7;25(20):6335–6342. [PubMed]
  • Wollemann M, Benyhe S, Simon J. The kappa-opioid receptor: evidence for the different subtypes. Life Sci. 1993;52(7):599–611. [PubMed]
  • Amodeo P, Motta A, Tancredi T, Salvadori S, Tomatis R, Picone D, Saviano G, Temussi PA. Solution structure of deltorphin I at 265 K: a quantitative NMR study. Pept Res. 1992 Jan-Feb;5(1):48–55. [PubMed]
  • Castiglione-Morelli MA, Lelj F, Pastore A, Salvadori S, Tancredi T, Tomatis R, Trivellone E, Temussi PA. A 500-MHz proton nuclear magnetic resonance study of mu opioid peptides in a simulated receptor environment. J Med Chem. 1987 Nov;30(11):2067–2073. [PubMed]
  • Schiller PW, Weltrowska G, Nguyen TM, Wilkes BC, Chung NN, Lemieux C. Conformationally restricted deltorphin analogues. J Med Chem. 1992 Oct 16;35(21):3956–3961. [PubMed]
  • Portoghese PS. Edward E. Smissman-Bristol-Myers Squibb Award Address. The role of concepts in structure-activity relationship studies of opioid ligands. J Med Chem. 1992 May 29;35(11):1927–1937. [PubMed]
  • Portoghese PS, Sultana M, Takemori AE. Naltrindole, a highly selective and potent non-peptide delta opioid receptor antagonist. Eur J Pharmacol. 1988 Jan 27;146(1):185–186. [PubMed]
  • Takemori AE, Sultana M, Nagase H, Portoghese PS. Agonist and antagonist activities of ligands derived from naltrexone and oxymorphone. Life Sci. 1992;50(20):1491–1495. [PubMed]
  • Tancredi T, Salvadori S, Amodeo P, Picone D, Lazarus LH, Bryant SD, Guerrini R, Marzola G, Temussi PA. Conversion of enkephalin and dermorphin into delta-selective opioid antagonists by single-residue substitution. Eur J Biochem. 1994 Aug 15;224(1):241–247. [PubMed]
  • Terenius L. Somatostatin and ACTH are peptides with partial antagonist-like selectivity for opiate receptors. Eur J Pharmacol. 1976 Jul;38(1):211–213. [PubMed]
  • Standifer KM, Chien CC, Wahlestedt C, Brown GP, Pasternak GW. Selective loss of delta opioid analgesia and binding by antisense oligodeoxynucleotides to a delta opioid receptor. Neuron. 1994 Apr;12(4):805–810. [PubMed]
  • Bilsky EJ, Bernstein RN, Pasternak GW, Hruby VJ, Patel D, Porreca F, Lai J. Selective inhibition of [D-Ala2, Glu4]deltorphin antinociception by supraspinal, but not spinal, administration of an antisense oligodeoxynucleotide to an opioid delta receptor. Life Sci. 1994;55(2):PL37–PL43. [PubMed]
  • Szabadi E. A model of two functionally antagonistic receptor populations activated by the same agonist. J Theor Biol. 1977 Nov 7;69(1):101–112. [PubMed]

Articles from Molecular Medicine are provided here courtesy of The Feinstein Institute for Medical Research at North Shore LIJ