PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of molmedLink to Publisher's site
 
Mol Med. 1995 March; 1(3): 280–286.
PMCID: PMC2229907

Construction of a novel bifunctional biogenic amine receptor by two point mutations of the H2-histamine receptor.

Abstract

BACKGROUND: H2-histamine receptors mediate a wide range of physiological functions extending from stimulation of gastric acid secretion to induction of human promyelocyte differentiation. We have previously cloned the H2-histamine receptor gene and noted that only three amino acids on the receptor were sufficient to define its specificity and selectivity. Despite only modest overall amino acid homology (34% amino acid identity and 57.5% similarity) between the H2-histamine receptor and the receptor for another monoamine, the beta 2-adrenergic receptor, there is remarkable similarity at their critical ligand binding sites. We hypothesized that, if the specificity and selectivity of both receptors are invested in just three amino acids, it should be possible to convert one of the receptors into one that recognizes the ligand of the other by simple mutations at only one or two sites. MATERIAL AND METHODS: We explored the effect of two single mutations in the fifth transmembrane domain of the H2-histamine receptor, which encompasses the sites that determine H2 selectivity. The canine H2 receptor gene was mutated at Asp186 and Gly187 (Asp186 to Ala186 and Gly187 to Ser187) by oligonuceotide directed mutagenesis. The coding region of both the wild-type and mutated H2 receptors was subcloned into the eukaryotic expression vector, CMVneo, and stably transfected into Hepa cells and L cells. The biological activity of histamine and epinephrine on the expressed receptor was examined by measurement of cellular cAMP production and inositol trisphosphate formation. RESULTS: Hepa cells transfected with the Ala186-Ser187 mutant H2 receptor demonstrated a biphasic rise in cAMP in response to epinephrine with an early phase (ED50 approximately 10(-11) M) that could be inhibited by both propranolol and cimetidine. Epinephrine also induced IP3 generation in the same cells, a biological response that is characteristic of activation of the wild-type H2 but not of the beta-adrenergic receptor. L cells transfected with the Ala186-Ser187 mutant H2 receptor also responded to epinephrine in a cimetidine and propranolol inhibitable manner. CONCLUSIONS: We converted the H2-histamine receptor into a bifunctional one that has characteristics of both histamine and adrenergic receptors by two simple mutations. These results support the hypothesis that ligand specificity is determined by only a few key points on a receptor regardless of the structure of the remainder of the molecule. Our studies have important implications on the design of pharmacological agents targeted for action at physiological receptors.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Gantz I, Schäffer M, DelValle J, Logsdon C, Campbell V, Uhler M, Yamada T. Molecular cloning of a gene encoding the histamine H2 receptor. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):429–433. [PubMed]
  • Strader CD, Sigal IS, Register RB, Candelore MR, Rands E, Dixon RA. Identification of residues required for ligand binding to the beta-adrenergic receptor. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4384–4388. [PubMed]
  • Strader CD, Candelore MR, Hill WS, Sigal IS, Dixon RA. Identification of two serine residues involved in agonist activation of the beta-adrenergic receptor. J Biol Chem. 1989 Aug 15;264(23):13572–13578. [PubMed]
  • Kunkel TA, Roberts JD, Zakour RA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. [PubMed]
  • Brown NA, Stofko RE, Uhler MD. Induction of alkaline phosphatase in mouse L cells by overexpression of the catalytic subunit of cAMP-dependent protein kinase. J Biol Chem. 1990 Aug 5;265(22):13181–13189. [PubMed]
  • Chen CA, Okayama H. Calcium phosphate-mediated gene transfer: a highly efficient transfection system for stably transforming cells with plasmid DNA. Biotechniques. 1988 Jul-Aug;6(7):632–638. [PubMed]
  • Wreggett KA, Irvine RF. A rapid separation method for inositol phosphates and their isomers. Biochem J. 1987 Aug 1;245(3):655–660. [PubMed]
  • Delvalle J, Wang L, Gantz I, Yamada T. Characterization of H2 histamine receptor: linkage to both adenylate cyclase and [Ca2+]i signaling systems. Am J Physiol. 1992 Dec;263(6 Pt 1):G967–G972. [PubMed]
  • Oksenberg D, Marsters SA, O'Dowd BF, Jin H, Havlik S, Peroutka SJ, Ashkenazi A. A single amino-acid difference confers major pharmacological variation between human and rodent 5-HT1B receptors. Nature. 1992 Nov 12;360(6400):161–163. [PubMed]
  • Parker EM, Grisel DA, Iben LG, Shapiro RA. A single amino acid difference accounts for the pharmacological distinctions between the rat and human 5-hydroxytryptamine1B receptors. J Neurochem. 1993 Jan;60(1):380–383. [PubMed]
  • Beinborn M, Lee YM, McBride EW, Quinn SM, Kopin AS. A single amino acid of the cholecystokinin-B/gastrin receptor determines specificity for non-peptide antagonists. Nature. 1993 Mar 25;362(6418):348–350. [PubMed]
  • Suryanarayana S, Daunt DA, Von Zastrow M, Kobilka BK. A point mutation in the seventh hydrophobic domain of the alpha 2 adrenergic receptor increases its affinity for a family of beta receptor antagonists. J Biol Chem. 1991 Aug 15;266(23):15488–15492. [PubMed]
  • Guan XM, Peroutka SJ, Kobilka BK. Identification of a single amino acid residue responsible for the binding of a class of beta-adrenergic receptor antagonists to 5-hydroxytryptamine1A receptors. Mol Pharmacol. 1992 Apr;41(4):695–698. [PubMed]
  • Fong TM, Yu H, Strader CD. Molecular basis for the species selectivity of the neurokinin-1 receptor antagonists CP-96,345 and RP67580. J Biol Chem. 1992 Dec 25;267(36):25668–25671. [PubMed]
  • Sachais BS, Snider RM, Lowe JA, 3rd, Krause JE. Molecular basis for the species selectivity of the substance P antagonist CP-96,345. J Biol Chem. 1993 Feb 5;268(4):2319–2323. [PubMed]
  • Gether U, Johansen TE, Snider RM, Lowe JA, 3rd, Nakanishi S, Schwartz TW. Different binding epitopes on the NK1 receptor for substance P and non-peptide antagonist. Nature. 1993 Mar 25;362(6418):345–348. [PubMed]

Articles from Molecular Medicine are provided here courtesy of The Feinstein Institute for Medical Research at North Shore LIJ