PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jexpmedHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
 
J Exp Med. Jan 1, 1952; 95(1): 71–97.
PMCID: PMC2212053
A MUCOPROTEIN DERIVED FROM HUMAN URINE WHICH REACTS WITH INFLUENZA, MUMPS, AND NEWCASTLE DISEASE VIRUSES
Igor Tamm and Frank L. Horsfall, Jr.
From the Hospital of The Rockefeller Institute for Medical Research
Received September 14, 1951
Abstract
A mucoprotein, present in normal human urine, has been isolated and obtained in a state of a high degree of purity. A number of the biological, chemical, and physicochemical properties of the substance have been studied. From the results obtained in the present investigation and those reported in succeeding papers (34, 35) it appears that the mucoprotein has a high molecular weight, i.e., of the order of 7.0 x 106, consists of thread-like molecules which have axial ratios of approximately 100, and is specifically antigenic. This substance, which appears to be free of contaminating material, possesses in extraordinary degree the capacity to react with influenza, mumps, and Newcastle disease viruses. At equilibrium, with influenza virus, the minimal amount of the substance capable of giving a demonstrable reaction with one hemagglutinating unit of virus appears to be about 0.0003 µg. The mucoprotein is altered by preparations of influenza viruses and its capacity to react with these agents or others is lost. The kinetics of the inactivation process brought about by influenza viruses is in accord with those of well known enzyme-substrate systems. With the exception of the capacity to react with viruses, altered mucoprotein did not differ from the native substance relative to any of the properties examined in the present study. That certain physicochemical properties of the altered mucoprotein are different from those of the native substance is demonstrated in succeeding papers (34, 35).
Full Text
The Full Text of this article is available as a PDF (1.4M).
Articles from The Journal of Experimental Medicine are provided here courtesy of
The Rockefeller University Press