Search tips
Search criteria 


Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Cell Biol. 1995 October 2; 131(2): 427–440.
PMCID: PMC2199980

Mutational analysis of the phototransduction pathway of Chlamydomonas reinhardtii


Chlamydomonas has two photobehavioral responses, phototaxis and photoshock. Rhodopsin is the photoreceptor for these responses and the signal transduction process involves transmembrane Ca2+ fluxes. This causes transient changes in flagellar beating, ultimately resulting in phototaxis or photoshock. To identify components that make up this signal transduction pathway, we generated nonphototactic strains by insertional mutagenesis. Seven new phototaxis genes were identified (ptx2-ptx8); alleles of six of these are tagged by the transforming DNA and therefore should be easily cloned. To order the mutants in the pathway, we characterized them electrophysiologically, behaviorally, and structurally, ptx5, ptx6, and ptx7 have normal light-induced photoreceptor currents (PRC) and flagellar currents (FC) but their pattern of swimming does not change in the normal manner when the intraflagellar Ca2+ concentration is decreased, suggesting that they have defects in the ability of their axonemes to respond to changes in Ca2+ concentration. ptx2 and ptx8 lack the FC but have normal PRCs, suggesting that they are defective in the flagellar Ca2+ channel or some factor that regulates it. ptx4 mutants have multiple eye-spots. ptx3 mutants are defective in a component essential for phototaxis but bypassed during photoshock; this component appears to be located downstream of the PRC but upstream of the axoneme.

Full Text

The Full Text of this article is available as a PDF (2.0M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bessen M, Fay RB, Witman GB. Calcium control of waveform in isolated flagellar axonemes of Chlamydomonas. J Cell Biol. 1980 Aug;86(2):446–455. [PMC free article] [PubMed]
  • Davis TN, Urdea MS, Masiarz FR, Thorner J. Isolation of the yeast calmodulin gene: calmodulin is an essential protein. Cell. 1986 Nov 7;47(3):423–431. [PubMed]
  • Fernández E, Schnell R, Ranum LP, Hussey SC, Silflow CD, Lefebvre PA. Isolation and characterization of the nitrate reductase structural gene of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6449–6453. [PubMed]
  • Foster KW, Smyth RD. Light Antennas in phototactic algae. Microbiol Rev. 1980 Dec;44(4):572–630. [PMC free article] [PubMed]
  • Foster KW, Saranak J, Patel N, Zarilli G, Okabe M, Kline T, Nakanishi K. A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature. 1984 Oct 25;311(5988):756–759. [PubMed]
  • Gitelman SE, Witman GB. Purification of calmodulin from Chlamydomonas: calmodulin occurs in cell bodies and flagella. J Cell Biol. 1980 Dec;87(3 Pt 1):764–770. [PMC free article] [PubMed]
  • Haga N, Forte M, Ramanathan R, Hennessey T, Takahashi M, Kung C. Characterization and purification of a soluble protein controlling Ca-channel activity in paramecium. Cell. 1984 Nov;39(1):71–78. [PubMed]
  • Hegemann P, Gärtner W, Uhl R. All-trans retinal constitutes the functional chromophore in Chlamydomonas rhodopsin. Biophys J. 1991 Dec;60(6):1477–1489. [PubMed]
  • Hinrichsen RD, Saimi Y, Hennessey T, Kung C. Mutants in paramecium tetraurelia defective in their axonemal response to calcium. Cell Motil. 1984;4(4):283–295. [PubMed]
  • Hoops HJ, Witman GB. Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella. J Cell Biol. 1983 Sep;97(3):902–908. [PMC free article] [PubMed]
  • Horst CJ, Witman GB. ptx1, a nonphototactic mutant of Chlamydomonas, lacks control of flagellar dominance. J Cell Biol. 1993 Feb;120(3):733–741. [PMC free article] [PubMed]
  • Huang B, Mengersen A, Lee VD. Molecular cloning of cDNA for caltractin, a basal body-associated Ca2+-binding protein: homology in its protein sequence with calmodulin and the yeast CDC31 gene product. J Cell Biol. 1988 Jul;107(1):133–140. [PMC free article] [PubMed]
  • Kamiya R, Witman GB. Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas. J Cell Biol. 1984 Jan;98(1):97–107. [PMC free article] [PubMed]
  • Kindle KL. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1228–1232. [PubMed]
  • Kuchka MR, Jarvik JW. Analysis of flagellar size control using a mutant of Chlamydomonas reinhardtii with a variable number of flagella. J Cell Biol. 1982 Jan;92(1):170–175. [PMC free article] [PubMed]
  • Kung C. Genic mutants with altered system of excitation in Paramecium aurelia. II. Mutagenesis, screening and genetic analysis of the mutants. Genetics. 1971 Sep;69(1):29–45. [PubMed]
  • Lawson MA, Zacks DN, Derguini F, Nakanishi K, Spudich JL. Retinal analog restoration of photophobic responses in a blind Chlamydomonas reinhardtii mutant. Evidence for an archaebacterial like chromophore in a eukaryotic rhodopsin. Biophys J. 1991 Dec;60(6):1490–1498. [PubMed]
  • LeDizet M, Piperno G. The light chain p28 associates with a subset of inner dynein arm heavy chains in Chlamydomonas axonemes. Mol Biol Cell. 1995 Jun;6(6):697–711. [PMC free article] [PubMed]
  • LEVINE RP, EBERSOLD WT. The genetics and cytology of Chlamydomonas. Annu Rev Microbiol. 1960;14:197–216. [PubMed]
  • Litvin FF, Sineshchekov OA, Sineshchekov VA. Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis. Nature. 1978 Feb 2;271(5644):476–478. [PubMed]
  • Moss AG, Pazour GJ, Witman GB. Assay of Chlamydomonas phototaxis. Methods Cell Biol. 1995;47:281–287. [PubMed]
  • SAGER R, GRANICK S. Nutritional studies with Chlamydomonas reinhardi. Ann N Y Acad Sci. 1953 Oct 14;56(5):831–838. [PubMed]
  • Seed B. Purification of genomic sequences from bacteriophage libraries by recombination and selection in vivo. Nucleic Acids Res. 1983 Apr 25;11(8):2427–2445. [PMC free article] [PubMed]
  • Sineshchekov OA, Govorunova EG, Dér A, Keszthelyi L, Nultsch W. Photoinduced electric currents in carotenoid-deficient Chlamydomonas mutants reconstituted with retinal and its analogs. Biophys J. 1994 Jun;66(6):2073–2084. [PubMed]
  • Smyth RD, Ebersold WT. Genetic investigation of a negatively phototactic strain of Chlamydomonas reinhardtii. Genet Res. 1985 Oct;46(2):133–148. [PubMed]
  • Taillon BE, Adler SA, Suhan JP, Jarvik JW. Mutational analysis of centrin: an EF-hand protein associated with three distinct contractile fibers in the basal body apparatus of Chlamydomonas. J Cell Biol. 1992 Dec;119(6):1613–1624. [PMC free article] [PubMed]
  • Takahashi M. Behavioral Mutants in PARAMECIUM CAUDATUM. Genetics. 1979 Mar;91(3):393–408. [PubMed]
  • Takeda T, Yamamoto M. Analysis and in vivo disruption of the gene coding for calmodulin in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3580–3584. [PubMed]
  • Tam LW, Lefebvre PA. Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics. 1993 Oct;135(2):375–384. [PubMed]
  • Wilkerson CG, King SM, Koutoulis A, Pazour GJ, Witman GB. The 78,000 M(r) intermediate chain of Chlamydomonas outer arm dynein isa WD-repeat protein required for arm assembly. J Cell Biol. 1995 Apr;129(1):169–178. [PMC free article] [PubMed]
  • Witman GB. Chlamydomonas phototaxis. Trends Cell Biol. 1993 Nov;3(11):403–408. [PubMed]
  • Zacks DN, Derguini F, Nakanishi K, Spudich JL. Comparative study of phototactic and photophobic receptor chromophore properties in Chlamydomonas reinhardtii. Biophys J. 1993 Jul;65(1):508–518. [PubMed]
  • Zimmer WE, Schloss JA, Silflow CD, Youngblom J, Watterson DM. Structural organization, DNA sequence, and expression of the calmodulin gene. J Biol Chem. 1988 Dec 25;263(36):19370–19383. [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press