Search tips
Search criteria 


Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Cell Biol. 1995 February 2; 128(4): 549–561.
PMCID: PMC2199884

Evidence for nonvectorial, retrograde transferrin trafficking in the early endosomes of HEp2 cells


We have previously characterized the trafficking of transferrin (Tf) through HEp2 human carcinoma cells (Ghosh, R. N., D. L. Gelman, and F. R. Maxfield, 1994. J. Cell Sci. 107:2177-2189). Early endosomes in these cells are comprised of both sorting endosomes and recycling compartments, which are distinct separate compartments. Endocytosed Tf initially appears in punctate sorting endosomes that also contain recently endocytosed LDL. After short loading pulses, Tf rapidly sorts from LDL with first-order kinetics (t1/2 approximately 2.5 min), and it enters the recycling compartment before leaving the cell (t1/2 approximately 7 min). Here, we report a second, slower rate for Tf to leave sorting endosomes after HEp2 cells were labeled to steady state with fluorescein Tf instead of the brief pulse used previously. We determined this rate using digital image analysis to measure the Tf content of sorting endosomes that also contained LDL. With an 11-min chase, the Tf in sorting endosomes was 24% of steady-state value. This was in excess of the amount expected (5% of steady state) from the rate of Tf exit after short filling pulses. The excess could not be accounted for by reinternalization of recycled cell surface Tf, implying that either some Tf was retained in sorting endosomes, or that Tf was delivered back to the sorting endosomes from the recycling compartment. The former is unlikely since nearly all sorting endosomes contain detectable Tf after an 11-min chase, even though more than one third of the sorting endosomes were formed during the chase time. Furthermore, while observing living cells by confocal microscopy, we saw vesicle movements that appeared to be fluorescent Tf returning from recycling compartments to sorting endosomes. The slow rate of exit after steady-state labeling was similar to the Tf exit rate from the cell, suggesting an equilibration of Tf throughout the early endosomal system by this retrograde pathway. This retrograde traffic may be important for delivering molecules from the recycling compartment, which is a long-lived organelle, to sorting endosomes, which are transient.

Full Text

The Full Text of this article is available as a PDF (4.5M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bowser R, Murphy RF. Kinetics of hydrolysis of endocytosed substrates by mammalian cultured cells: early introduction of lysosomal enzymes into the endocytic pathway. J Cell Physiol. 1990 Apr;143(1):110–117. [PubMed]
  • Diment S, Stahl P. Macrophage endosomes contain proteases which degrade endocytosed protein ligands. J Biol Chem. 1985 Dec 5;260(28):15311–15317. [PubMed]
  • Dunn KW, Maxfield FR. Delivery of ligands from sorting endosomes to late endosomes occurs by maturation of sorting endosomes. J Cell Biol. 1992 Apr;117(2):301–310. [PMC free article] [PubMed]
  • Dunn KW, McGraw TE, Maxfield FR. Iterative fractionation of recycling receptors from lysosomally destined ligands in an early sorting endosome. J Cell Biol. 1989 Dec;109(6 Pt 2):3303–3314. [PMC free article] [PubMed]
  • Geuze HJ, Slot JW, Strous GJ, Lodish HF, Schwartz AL. Intracellular site of asialoglycoprotein receptor-ligand uncoupling: double-label immunoelectron microscopy during receptor-mediated endocytosis. Cell. 1983 Jan;32(1):277–287. [PubMed]
  • Ghosh RN, Gelman DL, Maxfield FR. Quantification of low density lipoprotein and transferrin endocytic sorting HEp2 cells using confocal microscopy. J Cell Sci. 1994 Aug;107(Pt 8):2177–2189. [PubMed]
  • Goldstein JL, Basu SK, Brown MS. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 1983;98:241–260. [PubMed]
  • Goud B, McCaffrey M. Small GTP-binding proteins and their role in transport. Curr Opin Cell Biol. 1991 Aug;3(4):626–633. [PubMed]
  • Griffiths G, Gruenberg J. The arguments for pre-existing early and late endosomes. Trends Cell Biol. 1991 Jul;1(1):5–9. [PubMed]
  • Hopkins CR, Gibson A, Shipman M, Miller K. Movement of internalized ligand-receptor complexes along a continuous endosomal reticulum. Nature. 1990 Jul 26;346(6282):335–339. [PubMed]
  • Lippincott-Schwartz J. Bidirectional membrane traffic between the endoplasmic reticulum and Golgi apparatus. Trends Cell Biol. 1993 Mar;3(3):81–88. [PubMed]
  • Mattia E, Rao K, Shapiro DS, Sussman HH, Klausner RD. Biosynthetic regulation of the human transferrin receptor by desferrioxamine in K562 cells. J Biol Chem. 1984 Mar 10;259(5):2689–2692. [PubMed]
  • Mayor S, Presley JF, Maxfield FR. Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process. J Cell Biol. 1993 Jun;121(6):1257–1269. [PMC free article] [PubMed]
  • McGraw TE, Maxfield FR. Human transferrin receptor internalization is partially dependent upon an aromatic amino acid on the cytoplasmic domain. Cell Regul. 1990 Mar;1(4):369–377. [PMC free article] [PubMed]
  • McGraw TE, Dunn KW, Maxfield FR. Isolation of a temperature-sensitive variant Chinese hamster ovary cell line with a morphologically altered endocytic recycling compartment. J Cell Physiol. 1993 Jun;155(3):579–594. [PubMed]
  • Murphy RF. Maturation models for endosome and lysosome biogenesis. Trends Cell Biol. 1991 Oct;1(4):77–82. [PubMed]
  • Pagano RE, Sepanski MA, Martin OC. Molecular trapping of a fluorescent ceramide analogue at the Golgi apparatus of fixed cells: interaction with endogenous lipids provides a trans-Golgi marker for both light and electron microscopy. J Cell Biol. 1989 Nov;109(5):2067–2079. [PMC free article] [PubMed]
  • Pitas RE, Innerarity TL, Weinstein JN, Mahley RW. Acetoacetylated lipoproteins used to distinguish fibroblasts from macrophages in vitro by fluorescence microscopy. Arteriosclerosis. 1981 May-Jun;1(3):177–185. [PubMed]
  • Presley JF, Mayor S, Dunn KW, Johnson LS, McGraw TE, Maxfield FR. The End2 mutation in CHO cells slows the exit of transferrin receptors from the recycling compartment but bulk membrane recycling is unaffected. J Cell Biol. 1993 Sep;122(6):1231–1241. [PMC free article] [PubMed]
  • Salzman NH, Maxfield FR. Intracellular fusion of sequentially formed endocytic compartments. J Cell Biol. 1988 Apr;106(4):1083–1091. [PMC free article] [PubMed]
  • Salzman NH, Maxfield FR. Fusion accessibility of endocytic compartments along the recycling and lysosomal endocytic pathways in intact cells. J Cell Biol. 1989 Nov;109(5):2097–2104. [PMC free article] [PubMed]
  • Schmid SL, Fuchs R, Male P, Mellman I. Two distinct subpopulations of endosomes involved in membrane recycling and transport to lysosomes. Cell. 1988 Jan 15;52(1):73–83. [PubMed]
  • Snider MD, Rogers OC. Intracellular movement of cell surface receptors after endocytosis: resialylation of asialo-transferrin receptor in human erythroleukemia cells. J Cell Biol. 1985 Mar;100(3):826–834. [PMC free article] [PubMed]
  • Stoorvogel W, Geuze HJ, Strous GJ. Sorting of endocytosed transferrin and asialoglycoprotein occurs immediately after internalization in HepG2 cells. J Cell Biol. 1987 May;104(5):1261–1268. [PMC free article] [PubMed]
  • Stoorvogel W, Geuze HJ, Griffith JM, Strous GJ. The pathways of endocytosed transferrin and secretory protein are connected in the trans-Golgi reticulum. J Cell Biol. 1988 Jun;106(6):1821–1829. [PMC free article] [PubMed]
  • Stoorvogel W, Strous GJ, Geuze HJ, Oorschot V, Schwartz AL. Late endosomes derive from early endosomes by maturation. Cell. 1991 May 3;65(3):417–427. [PubMed]
  • Thomas JA, Buchsbaum RN, Zimniak A, Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. [PubMed]
  • Tooze J, Hollinshead M. Tubular early endosomal networks in AtT20 and other cells. J Cell Biol. 1991 Nov;115(3):635–653. [PMC free article] [PubMed]
  • van Deurs B, Holm PK, Kayser L, Sandvig K, Hansen SH. Multivesicular bodies in HEp-2 cells are maturing endosomes. Eur J Cell Biol. 1993 Aug;61(2):208–224. [PubMed]
  • van Deurs B, Petersen OW, Olsnes S, Sandvig K. The ways of endocytosis. Int Rev Cytol. 1989;117:131–177. [PubMed]
  • Yamashiro DJ, Tycko B, Fluss SR, Maxfield FR. Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi compartment in the recycling pathway. Cell. 1984 Jul;37(3):789–800. [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press