Search tips
Search criteria 


Logo of jexpmedHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Exp Med. 1996 October 1; 184(4): 1349–1355.
PMCID: PMC2192850

The Mycobacterium tuberculosis phagosome interacts with early endosomes and is accessible to exogenously administered transferrin


Previous studies have demonstrated that the Mycobacterium tuberculosis phagosome in human monocyte-derived macrophages acquires markers of early and late endosomes, but direct evidence of interaction of the M. tuberculosis phagosome with the endosomal compartment has been lacking. Using the cryosection immunogold technique, we have found that the M. tuberculosis phagosome acquires exogenously added transferrin in a time- dependent fashion. Near-maximal acquisition of transferrin occurs within 15 min, kinetics of acquisition consistent with interaction of the M. tuberculosis phagosome with early endosomes. Transferrin is chased out of the M. tuberculosis phagosome by incubation of the infected macrophages in culture medium lacking human transferrin. Phagosomes containing latex beads or heat-killed M. tuberculosis, on the other hand, do not acquire staining for transferrin. These and other findings demonstrate that M. tuberculosis arrests the maturation of its phagosome at a stage at which the phagosome interacts with early and late endosomes, but not with lysosomes. The transferrin endocytic pathway potentially provides a novel route for targeting antimicrobials to the M. tuberculosis phagosome.

Full Text

The Full Text of this article is available as a PDF (1.1M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Armstrong JA, Hart PD. Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med. 1971 Sep 1;134(3 Pt 1):713–740. [PMC free article] [PubMed]
  • Crowle AJ, Dahl R, Ross E, May MH. Evidence that vesicles containing living, virulent Mycobacterium tuberculosis or Mycobacterium avium in cultured human macrophages are not acidic. Infect Immun. 1991 May;59(5):1823–1831. [PMC free article] [PubMed]
  • Xu S, Cooper A, Sturgill-Koszycki S, van Heyningen T, Chatterjee D, Orme I, Allen P, Russell DG. Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages. J Immunol. 1994 Sep 15;153(6):2568–2578. [PubMed]
  • Clemens DL, Horwitz MA. Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J Exp Med. 1995 Jan 1;181(1):257–270. [PMC free article] [PubMed]
  • Horwitz MA. The Legionnaires' disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. J Exp Med. 1983 Dec 1;158(6):2108–2126. [PMC free article] [PubMed]
  • Horwitz MA, Maxfield FR. Legionella pneumophila inhibits acidification of its phagosome in human monocytes. J Cell Biol. 1984 Dec;99(6):1936–1943. [PMC free article] [PubMed]
  • Clemens DL, Horwitz MA. Membrane sorting during phagocytosis: selective exclusion of major histocompatibility complex molecules but not complement receptor CR3 during conventional and coiling phagocytosis. J Exp Med. 1992 May 1;175(5):1317–1326. [PMC free article] [PubMed]
  • Clemens DL, Horwitz MA. Hypoexpression of major histocompatibility complex molecules on Legionella pneumophila phagosomes and phagolysosomes. Infect Immun. 1993 Jul;61(7):2803–2812. [PMC free article] [PubMed]
  • van Renswoude J, Bridges KR, Harford JB, Klausner RD. Receptor-mediated endocytosis of transferrin and the uptake of fe in K562 cells: identification of a nonlysosomal acidic compartment. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6186–6190. [PubMed]
  • Dautry-Varsat A, Ciechanover A, Lodish HF. pH and the recycling of transferrin during receptor-mediated endocytosis. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2258–2262. [PubMed]
  • Allison AC, Byars NE. An adjuvant formulation that selectively elicits the formation of antibodies of protective isotypes and of cell-mediated immunity. J Immunol Methods. 1986 Dec 24;95(2):157–168. [PubMed]
  • Rabinowitz S, Horstmann H, Gordon S, Griffiths G. Immunocytochemical characterization of the endocytic and phagolysosomal compartments in peritoneal macrophages. J Cell Biol. 1992 Jan;116(1):95–112. [PMC free article] [PubMed]
  • Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, Allen RD, Gluck SL, Heuser J, Russell DG. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science. 1994 Feb 4;263(5147):678–681. [PubMed]
  • Harth G, Lee BY, Wang J, Clemens DL, Horwitz MA. Novel insights into the genetics, biochemistry, and immunocytochemistry of the 30-kilodalton major extracellular protein of Mycobacterium tuberculosis. Infect Immun. 1996 Aug;64(8):3038–3047. [PMC free article] [PubMed]
  • de Chastellier C, Lang T, Thilo L. Phagocytic processing of the macrophage endoparasite, Mycobacterium avium, in comparison to phagosomes which contain Bacillus subtilis or latex beads. Eur J Cell Biol. 1995 Oct;68(2):167–182. [PubMed]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press