Search tips
Search criteria 


Logo of jexpmedHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Exp Med. 1995 October 1; 182(4): 1143–1151.
PMCID: PMC2192282

Early embryo loss is associated with local production of nitric oxide by decidual mononuclear cells


In early embryo loss, the fetus may be considered to be an allograft and, therefore, may be rejected by maternal immunocytes. However, the cytotoxic mechanisms involved are still poorly understood. We have previously shown the involvement of natural killer (NK) cells and mononuclear cells expressing Mac-1 (CD11b) and F4/80 in resorbing compared to nonresorbing embryos. In this study, the role of nitric oxide (NO) in the mechanism of early embryo loss was studied. Pregnant CBA/J females mated with DBA/2 males (20-30% early embryo loss) and CD1 females mated with CD1 males (5-10% early embryo loss) were studied on days 8, 10, and 12 of gestation. Cells from the implantation sites of individual embryos were tested for the production of nitrite and nitrate with or without in vitro challenge with lipopolysaccharide (LPS) to determine whether decidual macrophages were primed in situ. On day 12 of gestation, when resorption was clearly visible, resorbing embryos showed more than a fivefold increase in both basal- and LPS- induced nitrite and nitrate production compared to nonresorbing embryos in both mouse strains tested, indicating that the decidual mononuclear cells were primed. Furthermore, more than 20% of CBA/J embryos showed a significant nitrate release on days 8 and 10 of gestation before any signs of embryo cytopathology. This percentage corresponded to the spontaneous resorption rate seen in CBA/J female X DBA/2 male matings. Similarly, 4% of the embryos from pregnant CD1 mice on days 8 and 12 of gestation produced a significant amount of nitrate, which again correlated with the low incidence of resorption observed in these mice. Using immunohistochemistry, the presence of inducible nitric oxide synthase (iNOS) was detected at implantation sites. Furthermore, decidual cells positive for both iNOS and the macrophage marker Mac-1 were demonstrated in implantation sites by double immunostaining. This strongly suggests that decidual macrophages could be the cellular source of NO production. Aminoguanidine, a selective inhibitor of the iNOS, inhibited the in vitro production of nitric oxide by cells isolated from individual implantation sites, and more strikingly, significantly reduced early embryo losses in CBA/J females mated by DBA/2 males when given orally or parenterally to the gravid females starting on day 6 of gestation. In addition, aminoguanidine-treated pregnant mice showed a significant increase in average litter size when the pregnancies were allowed to proceed to term.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (2.9M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Clark DA, McDermott MR, Szewczuk MR. Impairment of host-versus-graft reaction in pregnant mice. II. Selective suppression of cytotoxic T-cell generation correlates with soluble suppressor activity and with successful allogeneic pregnancy. Cell Immunol. 1980 Jun;52(1):106–118. [PubMed]
  • de Fougerolles AR, Baines MG. Modulation of the natural killer cell activity in pregnant mice alters the spontaneous abortion rate. J Reprod Immunol. 1987 Jun;11(2):147–153. [PubMed]
  • Duclos AJ, Pomerantz DK, Baines MG. Relationship between decidual leukocyte infiltration and spontaneous abortion in a murine model of early fetal resorption. Cell Immunol. 1994 Dec;159(2):184–193. [PubMed]
  • Duclos AJ, Haddad EK, Baines MG. Presence of activated macrophages in a murine model of early embryo loss. Am J Reprod Immunol. 1995 May;33(5):354–366. [PubMed]
  • Gendron RL, Baines MG. Infiltrating decidual natural killer cells are associated with spontaneous abortion in mice. Cell Immunol. 1988 May;113(2):261–267. [PubMed]
  • Gendron RL, Nestel FP, Lapp WS, Baines MG. Lipopolysaccharide-induced fetal resorption in mice is associated with the intrauterine production of tumour necrosis factor-alpha. J Reprod Fertil. 1990 Nov;90(2):395–402. [PubMed]
  • Hunt JS, Manning LS, Mitchell D, Selanders JR, Wood GW. Localization and characterization of macrophages in murine uterus. J Leukoc Biol. 1985 Aug;38(2):255–265. [PubMed]
  • Bulmer JN, Lunny DP, Hagin SV. Immunohistochemical characterization of stromal leucocytes in nonpregnant human endometrium. Am J Reprod Immunol Microbiol. 1988 Jul;17(3):83–90. [PubMed]
  • Hunt JS. Current topic: the role of macrophages in the uterine response to pregnancy. Placenta. 1990 Nov-Dec;11(6):467–475. [PubMed]
  • Chaouat G, Menu E, Clark DA, Dy M, Minkowski M, Wegmann TG. Control of fetal survival in CBA x DBA/2 mice by lymphokine therapy. J Reprod Fertil. 1990 Jul;89(2):447–458. [PubMed]
  • Naume B, Johnsen AC, Espevik T, Sundan A. Gene expression and secretion of cytokines and cytokine receptors from highly purified CD56+ natural killer cells stimulated with interleukin-2, interleukin-7 and interleukin-12. Eur J Immunol. 1993 Aug;23(8):1831–1838. [PubMed]
  • Beutler B, Krochin N, Milsark IW, Luedke C, Cerami A. Control of cachectin (tumor necrosis factor) synthesis: mechanisms of endotoxin resistance. Science. 1986 May 23;232(4753):977–980. [PubMed]
  • Burchett SK, Weaver WM, Westall JA, Larsen A, Kronheim S, Wilson CB. Regulation of tumor necrosis factor/cachectin and IL-1 secretion in human mononuclear phagocytes. J Immunol. 1988 May 15;140(10):3473–3481. [PubMed]
  • Geller DA, Nussler AK, Di Silvio M, Lowenstein CJ, Shapiro RA, Wang SC, Simmons RL, Billiar TR. Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):522–526. [PubMed]
  • Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed]
  • Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994 Mar 1;298(Pt 2):249–258. [PubMed]
  • Ding AH, Nathan CF, Stuehr DJ. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol. 1988 Oct 1;141(7):2407–2412. [PubMed]
  • Cho HJ, Xie QW, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Nathan C. Calmodulin is a subunit of nitric oxide synthase from macrophages. J Exp Med. 1992 Aug 1;176(2):599–604. [PMC free article] [PubMed]
  • Nathan C, Xie QW. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994 Sep 23;78(6):915–918. [PubMed]
  • Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. [PubMed]
  • Griffiths MJ, Messent M, MacAllister RJ, Evans TW. Aminoguanidine selectively inhibits inducible nitric oxide synthase. Br J Pharmacol. 1993 Nov;110(3):963–968. [PMC free article] [PubMed]
  • Hasan K, Heesen BJ, Corbett JA, McDaniel ML, Chang K, Allison W, Wolffenbuttel BH, Williamson JR, Tilton RG. Inhibition of nitric oxide formation by guanidines. Eur J Pharmacol. 1993 Nov 2;249(1):101–106. [PubMed]
  • Joly GA, Ayres M, Chelly F, Kilbourn RG. Effects of NG-methyl-L-arginine, NG-nitro-L-arginine, and aminoguanidine on constitutive and inducible nitric oxide synthase in rat aorta. Biochem Biophys Res Commun. 1994 Feb 28;199(1):147–154. [PubMed]
  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. [PubMed]
  • Rockett KA, Awburn MM, Aggarwal BB, Cowden WB, Clark IA. In vivo induction of nitrite and nitrate by tumor necrosis factor, lymphotoxin, and interleukin-1: possible roles in malaria. Infect Immun. 1992 Sep;60(9):3725–3730. [PMC free article] [PubMed]
  • Conrad KP, Vill M, McGuire PG, Dail WG, Davis AK. Expression of nitric oxide synthase by syncytiotrophoblast in human placental villi. FASEB J. 1993 Oct;7(13):1269–1276. [PubMed]
  • McCall TB, Boughton-Smith NK, Palmer RM, Whittle BJ, Moncada S. Synthesis of nitric oxide from L-arginine by neutrophils. Release and interaction with superoxide anion. Biochem J. 1989 Jul 1;261(1):293–296. [PubMed]
  • De M, Choudhuri R, Wood GW. Determination of the number and distribution of macrophages, lymphocytes, and granulocytes in the mouse uterus from mating through implantation. J Leukoc Biol. 1991 Sep;50(3):252–262. [PubMed]
  • Stuehr DJ, Marletta MA. Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lymphokines, or interferon-gamma. J Immunol. 1987 Jul 15;139(2):518–525. [PubMed]
  • Dalton DK, Pitts-Meek S, Keshav S, Figari IS, Bradley A, Stewart TA. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science. 1993 Mar 19;259(5102):1739–1742. [PubMed]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press