PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jexpmedHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
 
J Exp Med. 1995 November 1; 182(5): 1281–1290.
PMCID: PMC2192205

Antibodies to interleukin 12 abrogate established experimental colitis in mice

Abstract

In this study, we describe a novel murine model of chronic intestinal inflammation induced by the hapten reagent 2,4,6-trinitrobenzene sulfonic acid (TNBS). Rectal application of low doses of TNBS in BALB/c and SJL/J mice resulted in a chronic transmural colitis with severe diarrhea, weight loss, and rectal prolapse, an illness that mimics some characteristics of Crohn's disease in humans. The colon of TNBS-treated mice on day 7 was marked by infiltration of CD4+ T cells; furthermore, in situ polymerase chain reaction studies revealed high levels of interferon (IFN)-gamma mRNA in diseased colons. Isolated lamina propria (LP) CD4+ T cells from TNBS-treated mice stimulated with anti-CD3 and anti-CD28 antibodies exhibited a Th1 pattern of cytokine secretion: a 20-50-fold increase in IL-2 and IFN-gamma levels and a 5-fold decrease in IL-4 levels as compared with those of stimulated LP CD4+ T cells from control BALB/c mice. Administration of monoclonal anti-IL-12 antibodies to the TNBS-treated mice both early (at 5 d) and late (at 20 d) after induction of colitis led to a striking improvement in both the clinical and histopathological aspects of the disease and frequently abrogated the established colitis completely. Furthermore, LP CD4+ T cells isolated from anti-IL-12-treated mice failed to secrete IFN-gamma upon in vitro stimulation. In summary, the data demonstrate the pivotal role of IL-12 and IFN-gamma in a TNBS-induced murine model of chronic intestinal inflammation. Furthermore, they suggest the potential utility of anti-IL-12 antibodies in patients with Crohn's disease.

Full Text

The Full Text of this article is available as a PDF (3.4M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Podolsky DK. Inflammatory bowel disease (1) N Engl J Med. 1991 Sep 26;325(13):928–937. [PubMed]
  • Strober W, Ehrhardt RO. Chronic intestinal inflammation: an unexpected outcome in cytokine or T cell receptor mutant mice. Cell. 1993 Oct 22;75(2):203–205. [PubMed]
  • Hammer RE, Maika SD, Richardson JA, Tang JP, Taurog JD. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders. Cell. 1990 Nov 30;63(5):1099–1112. [PubMed]
  • Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell. 1993 Oct 22;75(2):253–261. [PubMed]
  • Kühn R, Löhler J, Rennick D, Rajewsky K, Müller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993 Oct 22;75(2):263–274. [PubMed]
  • Mombaerts P, Mizoguchi E, Grusby MJ, Glimcher LH, Bhan AK, Tonegawa S. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell. 1993 Oct 22;75(2):274–282. [PubMed]
  • Powrie F, Leach MW, Mauze S, Menon S, Caddle LB, Coffman RL. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity. 1994 Oct;1(7):553–562. [PubMed]
  • Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S, Loudon R, Sherman F, Perussia B, Trinchieri G. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med. 1989 Sep 1;170(3):827–845. [PMC free article] [PubMed]
  • Seder RA, Gazzinelli R, Sher A, Paul WE. Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon gamma production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10188–10192. [PubMed]
  • Ling P, Gately MK, Gubler U, Stern AS, Lin P, Hollfelder K, Su C, Pan YC, Hakimi J. Human IL-12 p40 homodimer binds to the IL-12 receptor but does not mediate biologic activity. J Immunol. 1995 Jan 1;154(1):116–127. [PubMed]
  • Podlaski FJ, Nanduri VB, Hulmes JD, Pan YC, Levin W, Danho W, Chizzonite R, Gately MK, Stern AS. Molecular characterization of interleukin 12. Arch Biochem Biophys. 1992 Apr;294(1):230–237. [PubMed]
  • Kubin M, Kamoun M, Trinchieri G. Interleukin 12 synergizes with B7/CD28 interaction in inducing efficient proliferation and cytokine production of human T cells. J Exp Med. 1994 Jul 1;180(1):211–222. [PMC free article] [PubMed]
  • Wynn TA, Eltoum I, Oswald IP, Cheever AW, Sher A. Endogenous interleukin 12 (IL-12) regulates granuloma formation induced by eggs of Schistosoma mansoni and exogenous IL-12 both inhibits and prophylactically immunizes against egg pathology. J Exp Med. 1994 May 1;179(5):1551–1561. [PMC free article] [PubMed]
  • Murray HW, Hariprashad J. Interleukin 12 is effective treatment for an established systemic intracellular infection: experimental visceral leishmaniasis. J Exp Med. 1995 Jan 1;181(1):387–391. [PMC free article] [PubMed]
  • Leonard JP, Waldburger KE, Goldman SJ. Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J Exp Med. 1995 Jan 1;181(1):381–386. [PMC free article] [PubMed]
  • Van der Heijden PJ, Stok W. Improved procedure for the isolation of functionally active lymphoid cells from the murine intestine. J Immunol Methods. 1987 Nov 5;103(2):161–167. [PubMed]
  • Heniford BW, Shum-Siu A, Leonberger M, Hendler FJ. Variation in cellular EGF receptor mRNA expression demonstrated by in situ reverse transcriptase polymerase chain reaction. Nucleic Acids Res. 1993 Jul 11;21(14):3159–3166. [PMC free article] [PubMed]
  • Gray PW, Goeddel DV. Cloning and expression of murine immune interferon cDNA. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5842–5846. [PubMed]
  • Wysocka M, Kubin M, Vieira LQ, Ozmen L, Garotta G, Scott P, Trinchieri G. Interleukin-12 is required for interferon-gamma production and lethality in lipopolysaccharide-induced shock in mice. Eur J Immunol. 1995 Mar;25(3):672–676. [PubMed]
  • Trinchieri G. Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes. Blood. 1994 Dec 15;84(12):4008–4027. [PubMed]
  • Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology. 1989 Mar;96(3):795–803. [PubMed]
  • Yamada Y, Marshall S, Specian RD, Grisham MB. A comparative analysis of two models of colitis in rats. Gastroenterology. 1992 May;102(5):1524–1534. [PubMed]
  • Cavani A, Hackett CJ, Wilson KJ, Rothbard JB, Katz SI. Characterization of epitopes recognized by hapten-specific CD4+ T cells. J Immunol. 1995 Feb 1;154(3):1232–1238. [PubMed]
  • Li L, Elliott JF, Mosmann TR. IL-10 inhibits cytokine production, vascular leakage, and swelling during T helper 1 cell-induced delayed-type hypersensitivity. J Immunol. 1994 Nov 1;153(9):3967–3978. [PubMed]
  • Mencacci A, Torosantucci A, Spaccapelo R, Romani L, Bistoni F, Cassone A. A mannoprotein constituent of Candida albicans that elicits different levels of delayed-type hypersensitivity, cytokine production, and anticandidal protection in mice. Infect Immun. 1994 Dec;62(12):5353–5360. [PMC free article] [PubMed]
  • Breese E, Braegger CP, Corrigan CJ, Walker-Smith JA, MacDonald TT. Interleukin-2- and interferon-gamma-secreting T cells in normal and diseased human intestinal mucosa. Immunology. 1993 Jan;78(1):127–131. [PubMed]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press