Search tips
Search criteria 


Logo of jexpmedHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Exp Med. 1994 October 1; 180(4): 1395–1403.
PMCID: PMC2191697

Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor


Interleukin 15 (IL-15) is a novel cytokine that has recently been cloned and expressed. Whereas it has no sequence homology with IL-2, IL- 15 interacts with components of the IL-2 receptor (IL-2R). In the present study we performed a functional analysis of recombinant IL-15 on phenotypically and functionally distinct populations of highly purified human natural killer (NK) cells. The CD56bright subset of human NK cells constitutively expresses the high affinity IL-2R and exhibits a brisk proliferative response after the binding of picomolar amounts of IL-2. Using a proliferation assay, IL-15 demonstrated a very steep dose-response curve that was distinct from the dose-response curve for IL-2. The proliferative effects of IL-15 could be abrogated by anti-IL-2R beta (p75), but not by anti-IL-2R alpha (p55). The proliferative effects of IL-2 on CD56bright NK cells could be inhibited by both antibodies. CD56dim NK cells express the intermediate affinity IL-2R in the absence of the high affinity IL-2R. Activation of CD56dim NK cells by IL-15 was similar to that of IL-2 as measured by enhanced NK cytotoxic activity, antibody-dependent cellular cytotoxicity, and NK cell production of interferon gamma, tumor necrosis factor alpha, and granulocyte/macrophage colony-stimulating factor. The IL-15-enhanced NK cytotoxic activity could be completely blocked by anti-IL-2R beta monoclonal antibody. The binding of radiolabeled IL-2 and IL-15 to CD56dim NK cells was inhibited in the presence of anti-IL-2R beta. Scatchard analysis of radiolabeled IL-15 and IL-2 binding to NK- enriched human lymphocytes revealed the presence of high and intermediate affinity receptors for both ligands. IL-15 is a ligand that activates human NK cells through components of the IL-2R in a pattern that is similar but not identical to that of IL-2. Unlike IL-2, IL-15 is produced by activated monocytes/macrophages. The discovery of IL-15 may increase our understanding of how monocytes/macrophages participate in the regulation of NK cell function.

Full Text

The Full Text of this article is available as a PDF (829K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Robertson MJ, Ritz J. Biology and clinical relevance of human natural killer cells. Blood. 1990 Dec 15;76(12):2421–2438. [PubMed]
  • Caligiuri MA, Zmuidzinas A, Manley TJ, Levine H, Smith KA, Ritz J. Functional consequences of interleukin 2 receptor expression on resting human lymphocytes. Identification of a novel natural killer cell subset with high affinity receptors. J Exp Med. 1990 May 1;171(5):1509–1526. [PMC free article] [PubMed]
  • Nagler A, Lanier LL, Phillips JH. Constitutive expression of high affinity interleukin 2 receptors on human CD16-natural killer cells in vivo. J Exp Med. 1990 May 1;171(5):1527–1533. [PMC free article] [PubMed]
  • Voss SD, Sondel PM, Robb RJ. Characterization of the interleukin 2 receptors (IL-2R) expressed on human natural killer cells activated in vivo by IL-2: association of the p64 IL-2R gamma chain with the IL-2R beta chain in functional intermediate-affinity IL-2R. J Exp Med. 1992 Aug 1;176(2):531–541. [PMC free article] [PubMed]
  • Grabstein KH, Eisenman J, Shanebeck K, Rauch C, Srinivasan S, Fung V, Beers C, Richardson J, Schoenborn MA, Ahdieh M, et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science. 1994 May 13;264(5161):965–968. [PubMed]
  • Giri JG, Ahdieh M, Eisenman J, Shanebeck K, Grabstein K, Kumaki S, Namen A, Park LS, Cosman D, Anderson D. Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J. 1994 Jun 15;13(12):2822–2830. [PubMed]
  • Sana TR, Wu Z, Smith KA, Ciardelli TL. Expression and ligand binding characterization of the beta-subunit (p75) ectodomain of the interleukin-2 receptor. Biochemistry. 1994 May 17;33(19):5838–5845. [PubMed]
  • Leonard WJ, Depper JM, Uchiyama T, Smith KA, Waldmann TA, Greene WC. A monoclonal antibody that appears to recognize the receptor for human T-cell growth factor; partial characterization of the receptor. Nature. 1982 Nov 18;300(5889):267–269. [PubMed]
  • Matos ME, Schnier GS, Beecher MS, Ashman LK, William DE, Caligiuri MA. Expression of a functional c-kit receptor on a subset of natural killer cells. J Exp Med. 1993 Sep 1;178(3):1079–1084. [PMC free article] [PubMed]
  • Robertson MJ, Caligiuri MA, Manley TJ, Levine H, Ritz J. Human natural killer cell adhesion molecules. Differential expression after activation and participation in cytolysis. J Immunol. 1990 Nov 15;145(10):3194–3201. [PubMed]
  • Caligiuri MA, Murray C, Robertson MJ, Wang E, Cochran K, Cameron C, Schow P, Ross ME, Klumpp TR, Soiffer RJ, et al. Selective modulation of human natural killer cells in vivo after prolonged infusion of low dose recombinant interleukin 2. J Clin Invest. 1993 Jan;91(1):123–132. [PMC free article] [PubMed]
  • Dower SK, Ozato K, Segal DM. The interaction of monoclonal antibodies with MHC class I antigens on mouse spleen cells. I. Analysis of the mechanism of binding. J Immunol. 1984 Feb;132(2):751–758. [PubMed]
  • Phillips JH, Takeshita T, Sugamura K, Lanier LL. Activation of natural killer cells via the p75 interleukin 2 receptor. J Exp Med. 1989 Jul 1;170(1):291–296. [PMC free article] [PubMed]
  • Robertson MJ, Soiffer RJ, Wolf SF, Manley TJ, Donahue C, Young D, Herrmann SH, Ritz J. Response of human natural killer (NK) cells to NK cell stimulatory factor (NKSF): cytolytic activity and proliferation of NK cells are differentially regulated by NKSF. J Exp Med. 1992 Mar 1;175(3):779–788. [PMC free article] [PubMed]
  • Chehimi J, Starr SE, Frank I, Rengaraju M, Jackson SJ, Llanes C, Kobayashi M, Perussia B, Young D, Nickbarg E, et al. Natural killer (NK) cell stimulatory factor increases the cytotoxic activity of NK cells from both healthy donors and human immunodeficiency virus-infected patients. J Exp Med. 1992 Mar 1;175(3):789–796. [PMC free article] [PubMed]
  • Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S, Loudon R, Sherman F, Perussia B, Trinchieri G. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med. 1989 Sep 1;170(3):827–845. [PMC free article] [PubMed]
  • Gazzinelli RT, Hieny S, Wynn TA, Wolf S, Sher A. Interleukin 12 is required for the T-lymphocyte-independent induction of interferon gamma by an intracellular parasite and induces resistance in T-cell-deficient hosts. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6115–6119. [PubMed]
  • Sher A, Oswald IP, Hieny S, Gazzinelli RT. Toxoplasma gondii induces a T-independent IFN-gamma response in natural killer cells that requires both adherent accessory cells and tumor necrosis factor-alpha. J Immunol. 1993 May 1;150(9):3982–3989. [PubMed]
  • Taniguchi T, Minami Y. The IL-2/IL-2 receptor system: a current overview. Cell. 1993 Apr 9;73(1):5–8. [PubMed]
  • Voss SD, Leary TP, Sondel PM, Robb RJ. Identification of a direct interaction between interleukin 2 and the p64 interleukin 2 receptor gamma chain. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2428–2432. [PubMed]
  • Metcalf D. Hematopoietic regulators: redundancy or subtlety? Blood. 1993 Dec 15;82(12):3515–3523. [PubMed]
  • Smith KA. Interleukin-2: inception, impact, and implications. Science. 1988 May 27;240(4856):1169–1176. [PubMed]
  • Wang HM, Smith KA. The interleukin 2 receptor. Functional consequences of its bimolecular structure. J Exp Med. 1987 Oct 1;166(4):1055–1069. [PMC free article] [PubMed]
  • Tripp CS, Wolf SF, Unanue ER. Interleukin 12 and tumor necrosis factor alpha are costimulators of interferon gamma production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a physiologic antagonist. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3725–3729. [PubMed]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press