PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jexpmedHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
 
J Exp Med. 1993 January 1; 177(1): 1–7.
PMCID: PMC2190868

The calcium-binding protein calreticulin is a major constituent of lytic granules in cytolytic T lymphocytes

Abstract

Cytolytic T lymphocytes (CTL), natural killer cells, and lymphokine- activated killer (LAK) cells are cytolytic cells known to release the cytolytic protein perforin and a family of proteases, named granzymes, from cytoplasmic stores upon interaction with target cells. We now report the purification of an additional major 60-kD granule-associated protein (grp 60) from human LAK cells and from mouse cytolytic T cells. The NH2-terminal amino acid sequence of the polypeptide was found to be identical to calreticulin. Calreticulin is a calcium storage protein and carries a COOH-terminal KDEL sequence, known to act as a retention signal for proteins destined to the lumen of the endoplasmic reticulum. In CTLs, however, calreticulin colocalizes with the lytic perforin to the lysosome-like secretory granules, as confirmed by double label immunofluorescence confocal microscopy. Moreover, when the release of granule-associated proteins was triggered by stimulation of the T cell receptor complex, calreticulin was released along with granzymes A and D. Since perforin is activated and becomes lytic in the presence of calcium, we propose that the role of calreticulin is to prevent organelle autolysis due to the protein's calcium chelator capacity.

Full Text

The Full Text of this article is available as a PDF (1003K).

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press