Search tips
Search criteria 


Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. 1986 February; 165(2): 570–578.
PMCID: PMC214457

Aerobactin biosynthesis and transport genes of plasmid ColV-K30 in Escherichia coli K-12.


The iron-regulated aerobactin operon, about 8 kilobase pairs in size, of the Escherichia coli plasmid ColV-K30 was shown by deletion and subcloning analyses to consist of at least five genes for synthesis (iuc, iron uptake chelate) and transport (iut, iron uptake transport) of the siderophore. The gene order iucABCD iutA was established. The genes were mapped within restriction nuclease fragments of a cloned 16.3-kilobase-pair HindIII fragment. Stepwise deletion and subsequent minicell analysis of the resulting plasmids allowed assignment of four of the five genes to polypeptides of molecular masses 63,000, 33,000 53,000, and 74,000 daltons, respectively. The 74-kilodalton protein, the product of gene iutA, is the outer membrane receptor for ferric aerobactin, whereas the remaining three proteins are involved in biosynthesis of aerobactin. The 33-kilodalton protein, the product of gene iucB, was identified as N epsilon-hydroxylysine:acetyl coenzyme A N epsilon-transacetylase (acetylase) by comparison of enzyme activity in extracts from various deletion mutants. The 53-kilodalton protein, the product of gene iucD, is required for oxygenation of lysine. The 63-kilodalton protein, the product of gene iucA, is assigned to the first step of the aerobactin synthetase reaction. The product of gene iucC, so far unidentified, performs the second and final step in this reaction. This is based on the chemical characterization of two precursor hydroxamic acids (N epsilon-acetyl-N epsilon-hydroxylysine and N alpha-citryl-N epsilon-acetyl-N epsilon-hydroxylysine) isolated from a strain carrying a 0.3-kilobase-pair deletion in the iucC gene. The results support the existence of a biosynthetic pathway in which aerobactin arises by oxygenation of lysine, acetylation of the N epsilon-hydroxy function, and condensation of 2 mol of the resulting aminohydroxamic acid with citric acid.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (2.7M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Akers HA, Llinás M, Neilands JB. Protonated amino acid precursor studies on rhodotorulic acid biosynthesis in deuterium oxide media. Biochemistry. 1972 Jun 6;11(12):2283–2291. [PubMed]
  • Atkin CL, Neilands JB, Phaff HJ. Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces, and a new alanine-containing ferrichrome from Cryptococcus melibiosum. J Bacteriol. 1970 Sep;103(3):722–733. [PMC free article] [PubMed]
  • Bindereif A, Braun V, Hantke K. The cloacin receptor of ColV-bearing Escherichia coli is part of the Fe3+-aerobactin transport system. J Bacteriol. 1982 Jun;150(3):1472–1475. [PMC free article] [PubMed]
  • Bindereif A, Neilands JB. Cloning of the aerobactin-mediated iron assimilation system of plasmid ColV. J Bacteriol. 1983 Feb;153(2):1111–1113. [PMC free article] [PubMed]
  • Bindereif A, Neilands JB. Aerobactin genes in clinical isolates of Escherichia coli. J Bacteriol. 1985 Feb;161(2):727–735. [PMC free article] [PubMed]
  • Bindereif A, Neilands JB. Promoter mapping and transcriptional regulation of the iron assimilation system of plasmid ColV-K30 in Escherichia coli K-12. J Bacteriol. 1985 Jun;162(3):1039–1046. [PMC free article] [PubMed]
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. [PubMed]
  • Braun V, Burkhardt R, Schneider R, Zimmermann L. Chromosomal genes for ColV plasmid-determined iron(III)-aerobactin transport in Escherichia coli. J Bacteriol. 1982 Aug;151(2):553–559. [PMC free article] [PubMed]
  • Braun V, Gross R, Köster W, Zimmermann L. Plasmid and chromosomal mutants in the iron(III)-aerobactin transport system of Escherichia coli. Use of streptonigrin for selection. Mol Gen Genet. 1983;192(1-2):131–139. [PubMed]
  • Carbonetti NH, Williams PH. A cluster of five genes specifying the aerobactin iron uptake system of plasmid ColV-K30. Infect Immun. 1984 Oct;46(1):7–12. [PMC free article] [PubMed]
  • Gross R, Engelbrecht F, Braun V. Genetic and biochemical characterization of the aerobactin synthesis operon on pColV. Mol Gen Genet. 1984;196(1):74–80. [PubMed]
  • Holmes DS, Quigley M. A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem. 1981 Jun;114(1):193–197. [PubMed]
  • Krone WJ, Luirink J, Koningstein G, Oudega B, de Graaf FK. Subcloning of the cloacin DF13/aerobactin receptor protein and identification of a pColV-K30-determined polypeptide involved in ferric-aerobactin uptake. J Bacteriol. 1983 Nov;156(2):945–948. [PMC free article] [PubMed]
  • Krone WJ, Oudega B, Stegehuis F, de Graaf FK. Cloning and expression of the cloacin DF13/aerobactin receptor of Escherichia coli (ColV-K30). J Bacteriol. 1983 Feb;153(2):716–721. [PMC free article] [PubMed]
  • Lugtenberg B, Meijers J, Peters R, van der Hoek P, van Alphen L. Electrophoretic resolution of the "major outer membrane protein" of Escherichia coli K12 into four bands. FEBS Lett. 1975 Oct 15;58(1):254–258. [PubMed]
  • McDougall S, Neilands JB. Plasmid- and chromosome-coded aerobactin synthesis in enteric bacteria: insertion sequences flank operon in plasmid-mediated systems. J Bacteriol. 1984 Jul;159(1):300–305. [PMC free article] [PubMed]
  • Meagher RB, Tait RC, Betlach M, Boyer HW. Protein expression in E. coli minicells by recombinant plasmids. Cell. 1977 Mar;10(3):521–536. [PubMed]
  • Murray GJ, Clark GE, Parniak MA, Viswanatha T. Effect of metabolites on epsilon-N-hydroxylysine formation in cell-free extracts of Aerobacter aerogenes 62-1. Can J Biochem. 1977 Jun;55(6):625–629. [PubMed]
  • Neilands JB. Microbial iron compounds. Annu Rev Biochem. 1981;50:715–731. [PubMed]
  • Parniak MA, Jackson GE, Murray GJ, Viswanatha T. Studies on the formation of N6-hydroxylysine in cell-free extracts of Aerobacter aerogenes 62-1. Biochim Biophys Acta. 1979 Jul 11;569(1):99–108. [PubMed]
  • Payne SM. Synthesis and utilization of siderophores by Shigella flexneri. J Bacteriol. 1980 Sep;143(3):1420–1424. [PMC free article] [PubMed]
  • Vieira J, Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. [PubMed]
  • Warner PJ, Williams PH, Bindereif A, Neilands JB. ColV plasmid-specific aerobactin synthesis by invasive strains of Escherichia coli. Infect Immun. 1981 Aug;33(2):540–545. [PMC free article] [PubMed]
  • Williams PH. Novel iron uptake system specified by ColV plasmids: an important component in the virulence of invasive strains of Escherichia coli. Infect Immun. 1979 Dec;26(3):925–932. [PMC free article] [PubMed]
  • Williams PH, Warner PJ. ColV plasmid-mediated, colicin V-independent iron uptake system of invasive strains of Escherichia coli. Infect Immun. 1980 Aug;29(2):411–416. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)