PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
 
J Bacteriol. 1986 February; 165(2): 443–447.
PMCID: PMC214438

Temperature-controlled plasmid regulon associated with low calcium response in Yersinia pestis.

Abstract

Both the low calcium response and virulence in Yersinia pestis strain KIM5 are mediated by genes located on the 75.4-kilobase plasmid pCD1. The results presented here demonstrate the existence of two new genetic loci of pCD1 whose expression is regulated in response to temperature. Levels of transcription in the trtA and trtB loci were elevated 12- to 16-fold at 37 degrees C compared with levels of transcription at 30 degrees C. In addition, the absolute levels of transcription were the highest that have been reported for genes on pCD1. Mutations in trtB also abolished production of the V antigen. Thermal induction at these loci was dramatically reduced in strains harboring a Tn5 insertion in the lcrF locus of pCD1. lcrF lies 33 and 13 kilobases from the trtA and trtB loci, respectively. Thus, lcrF is a positive regulatory gene responsible for temperature-induced transcription of genes required for the low calcium response.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bölin I, Norlander L, Wolf-Watz H. Temperature-inducible outer membrane protein of Yersinia pseudotuberculosis and Yersinia enterocolitica is associated with the virulence plasmid. Infect Immun. 1982 Aug;37(2):506–512. [PMC free article] [PubMed]
  • Bölin I, Portnoy DA, Wolf-Watz H. Expression of the temperature-inducible outer membrane proteins of yersiniae. Infect Immun. 1985 Apr;48(1):234–240. [PMC free article] [PubMed]
  • Bortolussi R, Ferrieri P, Quie PG. Influence of growth temperature of Escherichia coli on K1 capsular antigen production and resistance to opsonization. Infect Immun. 1983 Mar;39(3):1136–1141. [PMC free article] [PubMed]
  • Brubaker RR. Growth of Pasteurella pseudotuberculosis in simulated intracellular and extracellular environments. J Infect Dis. 1967 Dec;117(5):403–417. [PubMed]
  • BACON GA, BURROWS TW. The basis of virulence in Pasteurella pestis: an antigen determining virulence. Br J Exp Pathol. 1956 Oct;37(5):481–493. [PubMed]
  • BURROWS TW, BACON GA. V and W antigens in strains of Pasteurella pseudotuberculosis. Br J Exp Pathol. 1960 Feb;41:38–44. [PubMed]
  • Carter PB, Zahorchak RJ, Brubaker RR. Plague virulence antigens from Yersinia enterocolitica. Infect Immun. 1980 May;28(2):638–640. [PMC free article] [PubMed]
  • Casadaban MJ, Cohen SN. Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4530–4533. [PubMed]
  • Chang AC, Cohen SN. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol. 1978 Jun;134(3):1141–1156. [PMC free article] [PubMed]
  • de Graaf FK, Wientjes FB, Klaasen-Boor P. Production of K99 antigen by enterotoxigenic Escherichia coli strains of antigen groups o8, o9, o20, and o101 grown at different conditions. Infect Immun. 1980 Jan;27(1):216–221. [PMC free article] [PubMed]
  • Goguen JD, Yother J, Straley SC. Genetic analysis of the low calcium response in Yersinia pestis mu d1(Ap lac) insertion mutants. J Bacteriol. 1984 Dec;160(3):842–848. [PMC free article] [PubMed]
  • Grossman AD, Erickson JW, Gross CA. The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell. 1984 Sep;38(2):383–390. [PubMed]
  • HIGUCHI K, KUPFERBERG LL, SMITH JL. Studies on the nutrition and physiology of Pasteurella pestis. III. Effects of calcium ions on the growth of virulent and avirulent strains of Pasteurella pestis. J Bacteriol. 1959 Mar;77(3):317–321. [PMC free article] [PubMed]
  • HIGUCHI K, SMITH JL. Studies on the nutrition and physiology of Pasteurella pestis. VI. A differential plating medium for the estimation of the mutation rate to avirulence. J Bacteriol. 1961 Apr;81:605–608. [PMC free article] [PubMed]
  • Jones GW, Richardson LA. The attachment to, and invasion of HeLa cells by Salmonella typhimurium: the contribution of mannose-sensitive and mannose-resistant haemagglutinating activities. J Gen Microbiol. 1981 Dec;127(2):361–370. [PubMed]
  • Jorgensen RA, Rothstein SJ, Reznikoff WS. A restriction enzyme cleavage map of Tn5 and location of a region encoding neomycin resistance. Mol Gen Genet. 1979;177(1):65–72. [PubMed]
  • Kado CI, Liu ST. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981 Mar;145(3):1365–1373. [PMC free article] [PubMed]
  • Krueger JH, Walker GC. Mud(Ap, lac)-generated fusions in studies of gene expression. Methods Enzymol. 1983;100:501–509. [PubMed]
  • KUPFERBERG LL, HIGUCHI K. Role of calcium ions in the stimulation of growth of virulent strains of Pasteurella pestis. J Bacteriol. 1958 Jul;76(1):120–121. [PMC free article] [PubMed]
  • Maurelli AT, Blackmon B, Curtiss R., 3rd Temperature-dependent expression of virulence genes in Shigella species. Infect Immun. 1984 Jan;43(1):195–201. [PMC free article] [PubMed]
  • Maurelli AT, Curtiss R., 3rd Bacteriophage Mu d1(Apr lac) generates vir-lac operon fusions in Shigella flexneri 2a. Infect Immun. 1984 Sep;45(3):642–648. [PMC free article] [PubMed]
  • Neidhardt FC, VanBogelen RA, Vaughn V. The genetics and regulation of heat-shock proteins. Annu Rev Genet. 1984;18:295–329. [PubMed]
  • O'Connor MB, Malamy MH. A new insertion sequence, IS121, is found on the Mu dI1 (Ap lac) bacteriophage and the Escherichia coli K-12 chromosome. J Bacteriol. 1983 Nov;156(2):669–679. [PMC free article] [PubMed]
  • Portnoy DA, Blank HF, Kingsbury DT, Falkow S. Genetic analysis of essential plasmid determinants of pathogenicity in Yersinia pestis. J Infect Dis. 1983 Aug;148(2):297–304. [PubMed]
  • Portnoy DA, Falkow S. Virulence-associated plasmids from Yersinia enterocolitica and Yersinia pestis. J Bacteriol. 1981 Dec;148(3):877–883. [PMC free article] [PubMed]
  • Portnoy DA, Wolf-Watz H, Bolin I, Beeder AB, Falkow S. Characterization of common virulence plasmids in Yersinia species and their role in the expression of outer membrane proteins. Infect Immun. 1984 Jan;43(1):108–114. [PMC free article] [PubMed]
  • Tilghman SM, Tiemeier DC, Polsky F, Edgell MH, Seidman JG, Leder A, Enquist LW, Norman B, Leder P. Cloning specific segments of the mammalian genome: bacteriophage lambda containing mouse globin and surrounding gene sequences. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4406–4410. [PubMed]
  • Wolf-Watz H, Portnoy DA, Bölin I, Falkow S. Transfer of the virulence plasmid of Yersinia pestis to Yersinia pseudotuberculosis. Infect Immun. 1985 Apr;48(1):241–243. [PMC free article] [PubMed]
  • Yother J, Goguen JD. Isolation and characterization of Ca2+-blind mutants of Yersinia pestis. J Bacteriol. 1985 Nov;164(2):704–711. [PMC free article] [PubMed]
  • Zahorchak RJ, Brubaker RR. Effect of exogenous nucleotides on Ca2+ dependence and V antigen synthesis in Yersinia pestis. Infect Immun. 1982 Dec;38(3):953–959. [PMC free article] [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)