Search tips
Search criteria 


Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. 1986 January; 165(1): 198–203.
PMCID: PMC214389

Posttranscriptional autoregulation of Escherichia coli threonyl tRNA synthetase expression in vivo.


Five mutations in thrS, the gene for threonyl-tRNA synthetase, have been characterized, and the sites of the mutations have been localized to different regions of the thrS gene by recombination with M13 phage carrying portions of the thrS gene. Quantitative immunoblotting shows that some of these mutations cause the overproduction of structurally altered threonyl-tRNA synthetase in vivo. The amounts of in vivo thrS mRNA as measured by quantitative hybridization are, however, the same as wild-type levels for each mutant. These results demonstrate that the expression of threonyl-tRNA synthetase is autoregulated at the posttranscriptional level in vivo.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Casadaban MJ, Chou J, Cohen SN. In vitro gene fusions that join an enzymatically active beta-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J Bacteriol. 1980 Aug;143(2):971–980. [PMC free article] [PubMed]
  • Dennert G, Henning U. Tyrosine-incorporating amber suppressors in Escherichia coli K12. J Mol Biol. 1968 Apr 14;33(1):327–329. [PubMed]
  • Fayat G, Mayaux JF, Sacerdot C, Fromant M, Springer M, Grunberg-Manago M, Blanquet S. Escherichia coli phenylalanyl-tRNA synthetase operon region. Evidence for an attenuation mechanism. Identification of the gene for the ribosomal protein L20. J Mol Biol. 1983 Dec 15;171(3):239–261. [PubMed]
  • Hennecke H, Böck A, Thomale J, Nass G. Threonyl-transfer ribonucleic acid synthetase from Escherichia coli: subunit structure and genetic analysis of the structural gene by means of a mutated enzyme and of a specialized transducing lambda bacteriophage. J Bacteriol. 1977 Sep;131(3):943–950. [PMC free article] [PubMed]
  • Howe JG, Hershey JW. A sensitive immunoblotting method for measuring protein synthesis initiation factor levels in lysates of Escherichia coli. J Biol Chem. 1981 Dec 25;256(24):12836–12839. [PubMed]
  • Howe JG, Hershey JW. Initiation factor and ribosome levels are coordinately controlled in Escherichia coli growing at different rates. J Biol Chem. 1983 Feb 10;258(3):1954–1959. [PubMed]
  • Johnson EJ, Cohen GN, Saint-Girons I. Threonyl-transfer ribonucleic acid synthetase and the regulation of the threonine operon in Escherichia coli. J Bacteriol. 1977 Jan;129(1):66–70. [PMC free article] [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Lestienne P, Plumbridge JA, Grunberg-Manago M, Blanquet S. Autogenous repression of Escherichia coli threonyl-tRNA synthetase expression in vitro. J Biol Chem. 1984 Apr 25;259(8):5232–5237. [PubMed]
  • Mayaux JF, Fayat G, Fromant M, Springer M, Grunberg-Manago M, Blanquet S. Structural and transcriptional evidence for related thrS and infC expression. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6152–6156. [PubMed]
  • Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. [PubMed]
  • Murgola EJ, Yanofsky C. Structural interactions between amino acid residues at positions 22 and 211 in the tryptophan synthetase alpha chain of Escherichia coli. J Bacteriol. 1974 Feb;117(2):444–448. [PMC free article] [PubMed]
  • Neidhardt FC, Bloch PL, Pedersen S, Reeh S. Chemical measurement of steady-state levels of ten aminoacyl-transfer ribonucleic acid synthetases in Escherichia coli. J Bacteriol. 1977 Jan;129(1):378–387. [PMC free article] [PubMed]
  • Neidhardt FC, Bloch PL, Smith DF. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. [PMC free article] [PubMed]
  • Neihardt FC, Parker J, McKeever WG. Function and regulation of aminoacyl-tRNA synthetases in prokaryotic and eukaryotic cells. Annu Rev Microbiol. 1975;29:215–250. [PubMed]
  • Nomura M, Gourse R, Baughman G. Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem. 1984;53:75–117. [PubMed]
  • Plumbridge JA, Springer M. Genes for the two subunits of phenylalanyl-tRNA synthesis of Escherichia coli are transcribed from the same promoter. J Mol Biol. 1980 Dec 25;144(4):595–600. [PubMed]
  • Plumbridge JA, Springer M. Escherichia coli phenylalanyl-tRNA synthetase operon: characterization of mutations isolated on multicopy plasmids. J Bacteriol. 1982 Nov;152(2):650–660. [PMC free article] [PubMed]
  • Plumbridge JA, Springer M. Escherichia coli phenylalanyl-tRNA synthetase operon: transcription studies of wild-type and mutated operons on multicopy plasmids. J Bacteriol. 1982 Nov;152(2):661–668. [PMC free article] [PubMed]
  • Plumbridge JA, Springer M, Graffe M, Goursot R, Grunberg-Manago M. Physical localisation and cloning of the structural gene for E. coli initiation factor IF3 from a group of genes concerned with translation. Gene. 1980 Oct;11(1-2):33–42. [PubMed]
  • Putney SD, Schimmel P. An aminoacyl tRNA synthetase binds to a specific DNA sequence and regulates its gene transcription. Nature. 1981 Jun 25;291(5817):632–635. [PubMed]
  • Russel M, Gold L, Morrissett H, O'Farrell PZ. Translational, autogenous regulation of gene 32 expression during bacteriophage T4 infection. J Biol Chem. 1976 Nov 25;251(22):7263–7270. [PubMed]
  • Springer M, Plumbridge JA, Butler JS, Graffe M, Dondon J, Mayaux JF, Fayat G, Lestienne P, Blanquet S, Grunberg-Manago M. Autogenous control of Escherichia coli threonyl-tRNA synthetase expression in vivo. J Mol Biol. 1985 Sep 5;185(1):93–104. [PubMed]
  • Springer M, Plumbridge JA, Trudel M, Graffe M, Grunberg-Manago M. Transcription units around the gene for E. coli translation initiation factor IF3 (infC). Mol Gen Genet. 1982;186(2):247–252. [PubMed]
  • Springer M, Trudel M, Graffe M, Plumbridge J, Fayat G, Mayaux JF, Sacerdot C, Blanquet S, Grunberg-Manago M. Escherichia coli phenylalanyl-tRNA synthetase operon is controlled by attenuation in vivo. J Mol Biol. 1983 Dec 15;171(3):263–279. [PubMed]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)