PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
 
J Cell Biol. 1996 November 1; 135(3): 559–569.
PMCID: PMC2121062

RanBP1 stabilizes the interaction of Ran with p97 nuclear protein import

Abstract

Three factors have been identified that reconstitute nuclear protein import in a permeabilized cell assay: the NLS receptor, p97, and Ran/TC4. Ran/TC4, in turn, interacts with a number of proteins that are involved in the regulation of GTP hydrolysis or are components of the nuclear pore. Two Ran-binding proteins, RanBP1 and RanBP2, form discrete complexes with p97 as demonstrated by immunoadsorption from HeLa cell extracts fractionated by gel filtration chromatography. A > 400-kD complex contains p97, Ran, and RanBP2. Another complex of 150- 300 kD was comprised of p97, Ran, and RanBP1. This second trimeric complex could be reconstituted from recombinant proteins. In solution binding assays, Ran-GTP bound p97 with high affinity, but the binding of Ran-GDP to p97 was undetectable. The addition of RanBP1 with Ran-GDP or Ran-GTP increased the affinity of both forms of Ran for p97 to the same level. Binding of Ran-GTP to p97 dissociated p97 from immobilized NLS receptor while the Ran-GDP/RanBP1/p97 complex did not dissociate from the receptor. In a digitonin-permeabilized cell docking assay, RanBP1 stabilizes the receptor complex against temperature-dependent release from the pore. When added to an import assay with recombinant NLS receptor, p97 and Ran-GDP, RanBP1 significantly stimulates transport. These results suggest that RanBP1 promotes both the docking and translocation steps in nuclear protein import by stabilizing the interaction of Ran-GDP with p97.

Full Text

The Full Text of this article is available as a PDF (2.0M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Adam EJ, Adam SA. Identification of cytosolic factors required for nuclear location sequence-mediated binding to the nuclear envelope. J Cell Biol. 1994 May;125(3):547–555. [PMC free article] [PubMed]
  • Adam SA, Gerace L. Cytosolic proteins that specifically bind nuclear location signals are receptors for nuclear import. Cell. 1991 Sep 6;66(5):837–847. [PubMed]
  • Adam SA, Marr RS, Gerace L. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J Cell Biol. 1990 Sep;111(3):807–816. [PMC free article] [PubMed]
  • Becker J, Melchior F, Gerke V, Bischoff FR, Ponstingl H, Wittinghofer A. RNA1 encodes a GTPase-activating protein specific for Gsp1p, the Ran/TC4 homologue of Saccharomyces cerevisiae. J Biol Chem. 1995 May 19;270(20):11860–11865. [PubMed]
  • Beddow AL, Richards SA, Orem NR, Macara IG. The Ran/TC4 GTPase-binding domain: identification by expression cloning and characterization of a conserved sequence motif. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3328–3332. [PubMed]
  • Bischoff FR, Ponstingl H. Mitotic regulator protein RCC1 is complexed with a nuclear ras-related polypeptide. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10830–10834. [PubMed]
  • Bischoff FR, Klebe C, Kretschmer J, Wittinghofer A, Ponstingl H. RanGAP1 induces GTPase activity of nuclear Ras-related Ran. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2587–2591. [PubMed]
  • Bischoff FR, Krebber H, Smirnova E, Dong W, Ponstingl H. Co-activation of RanGTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1. EMBO J. 1995 Feb 15;14(4):705–715. [PubMed]
  • Chi NC, Adam EJ, Adam SA. Sequence and characterization of cytoplasmic nuclear protein import factor p97. J Cell Biol. 1995 Jul;130(2):265–274. [PMC free article] [PubMed]
  • Corbett AH, Koepp DM, Schlenstedt G, Lee MS, Hopper AK, Silver PA. Rna1p, a Ran/TC4 GTPase activating protein, is required for nuclear import. J Cell Biol. 1995 Sep;130(5):1017–1026. [PMC free article] [PubMed]
  • Coutavas E, Ren M, Oppenheim JD, D'Eustachio P, Rush MG. Characterization of proteins that interact with the cell-cycle regulatory protein Ran/TC4. Nature. 1993 Dec 9;366(6455):585–587. [PubMed]
  • Dingwall C, Laskey RA. Nuclear targeting sequences--a consensus? Trends Biochem Sci. 1991 Dec;16(12):478–481. [PubMed]
  • Dingwall C, Kandels-Lewis S, Séraphin B. A family of Ran binding proteins that includes nucleoporins. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7525–7529. [PubMed]
  • Dreyfuss G, Adam SA, Choi YD. Physical change in cytoplasmic messenger ribonucleoproteins in cells treated with inhibitors of mRNA transcription. Mol Cell Biol. 1984 Mar;4(3):415–423. [PMC free article] [PubMed]
  • Enenkel C, Blobel G, Rexach M. Identification of a yeast karyopherin heterodimer that targets import substrate to mammalian nuclear pore complexes. J Biol Chem. 1995 Jul 14;270(28):16499–16502. [PubMed]
  • Feldherr CM, Kallenbach E, Schultz N. Movement of a karyophilic protein through the nuclear pores of oocytes. J Cell Biol. 1984 Dec;99(6):2216–2222. [PMC free article] [PubMed]
  • Floer M, Blobel G. The nuclear transport factor karyopherin beta binds stoichiometrically to Ran-GTP and inhibits the Ran GTPase activating protein. J Biol Chem. 1996 Mar 8;271(10):5313–5316. [PubMed]
  • Görlich D, Mattaj IW. Nucleocytoplasmic transport. Science. 1996 Mar 15;271(5255):1513–1518. [PubMed]
  • Görlich D, Prehn S, Laskey RA, Hartmann E. Isolation of a protein that is essential for the first step of nuclear protein import. Cell. 1994 Dec 2;79(5):767–778. [PubMed]
  • Görlich D, Kostka S, Kraft R, Dingwall C, Laskey RA, Hartmann E, Prehn S. Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Curr Biol. 1995 Apr 1;5(4):383–392. [PubMed]
  • Görlich D, Vogel F, Mills AD, Hartmann E, Laskey RA. Distinct functions for the two importin subunits in nuclear protein import. Nature. 1995 Sep 21;377(6546):246–248. [PubMed]
  • Görlich D, Henklein P, Laskey RA, Hartmann E. A 41 amino acid motif in importin-alpha confers binding to importin-beta and hence transit into the nucleus. EMBO J. 1996 Apr 15;15(8):1810–1817. [PubMed]
  • Hartmann E, Görlich D. A Ran-binding motif in nuclear pore proteins. Trends Cell Biol. 1995 May;5(5):192–193. [PubMed]
  • Hayashi N, Yokoyama N, Seki T, Azuma Y, Ohba T, Nishimoto T. RanBP1, a Ras-like nuclear G protein binding to Ran/TC4, inhibits RCC1 via Ran/TC4. Mol Gen Genet. 1995 Jun 25;247(6):661–669. [PubMed]
  • Imamoto N, Tachibana T, Matsubae M, Yoneda Y. A karyophilic protein forms a stable complex with cytoplasmic components prior to nuclear pore binding. J Biol Chem. 1995 Apr 14;270(15):8559–8565. [PubMed]
  • Iovine MK, Watkins JL, Wente SR. The GLFG repetitive region of the nucleoporin Nup116p interacts with Kap95p, an essential yeast nuclear import factor. J Cell Biol. 1995 Dec;131(6 Pt 2):1699–1713. [PMC free article] [PubMed]
  • Lounsbury KM, Beddow AL, Macara IG. A family of proteins that stabilize the Ran/TC4 GTPase in its GTP-bound conformation. J Biol Chem. 1994 Apr 15;269(15):11285–11290. [PubMed]
  • Lounsbury KM, Richards SA, Perlungher RR, Macara IG. Ran binding domains promote the interaction of Ran with p97/beta-karyopherin, linking the docking and translocation steps of nuclear import. J Biol Chem. 1996 Feb 2;271(5):2357–2360. [PubMed]
  • Melchior F, Gerace L. Mechanisms of nuclear protein import. Curr Opin Cell Biol. 1995 Jun;7(3):310–318. [PubMed]
  • Melchior F, Guan T, Yokoyama N, Nishimoto T, Gerace L. GTP hydrolysis by Ran occurs at the nuclear pore complex in an early step of protein import. J Cell Biol. 1995 Nov;131(3):571–581. [PMC free article] [PubMed]
  • Melchior F, Sweet DJ, Gerace L. Analysis of Ran/TC4 function in nuclear protein import. Methods Enzymol. 1995;257:279–291. [PubMed]
  • Melchior F, Paschal B, Evans J, Gerace L. Inhibition of nuclear protein import by nonhydrolyzable analogues of GTP and identification of the small GTPase Ran/TC4 as an essential transport factor. J Cell Biol. 1993 Dec;123(6 Pt 2):1649–1659. [PMC free article] [PubMed]
  • Moore MS, Blobel G. The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature. 1993 Oct 14;365(6447):661–663. [PubMed]
  • Moore MS, Blobel G. Purification of a Ran-interacting protein that is required for protein import into the nucleus. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10212–10216. [PubMed]
  • Moore MS, Blobel G. Soluble factors required for nuclear protein import. Cold Spring Harb Symp Quant Biol. 1995;60:701–705. [PubMed]
  • Moroianu J, Blobel G, Radu A. Previously identified protein of uncertain function is karyopherin alpha and together with karyopherin beta docks import substrate at nuclear pore complexes. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2008–2011. [PubMed]
  • Moroianu J, Hijikata M, Blobel G, Radu A. Mammalian karyopherin alpha 1 beta and alpha 2 beta heterodimers: alpha 1 or alpha 2 subunit binds nuclear localization signal and beta subunit interacts with peptide repeat-containing nucleoporins. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6532–6536. [PubMed]
  • Nehrbass U, Blobel G. Role of the nuclear transport factor p10 in nuclear import. Science. 1996 Apr 5;272(5258):120–122. [PubMed]
  • Newmeyer DD. The nuclear pore complex and nucleocytoplasmic transport. Curr Opin Cell Biol. 1993 Jun;5(3):395–407. [PubMed]
  • O'Neill RE, Palese P. NPI-1, the human homolog of SRP-1, interacts with influenza virus nucleoprotein. Virology. 1995 Jan 10;206(1):116–125. [PubMed]
  • O'Neill RE, Jaskunas R, Blobel G, Palese P, Moroianu J. Nuclear import of influenza virus RNA can be mediated by viral nucleoprotein and transport factors required for protein import. J Biol Chem. 1995 Sep 29;270(39):22701–22704. [PubMed]
  • Paschal BM, Gerace L. Identification of NTF2, a cytosolic factor for nuclear import that interacts with nuclear pore complex protein p62. J Cell Biol. 1995 May;129(4):925–937. [PMC free article] [PubMed]
  • Powers MA, Forbes DJ. Cytosolic factors in nuclear transport: what's importin? Cell. 1994 Dec 16;79(6):931–934. [PubMed]
  • Radu A, Blobel G, Moore MS. Identification of a protein complex that is required for nuclear protein import and mediates docking of import substrate to distinct nucleoporins. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1769–1773. [PubMed]
  • Radu A, Moore MS, Blobel G. The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell. 1995 Apr 21;81(2):215–222. [PubMed]
  • Ren M, Villamarin A, Shih A, Coutavas E, Moore MS, LoCurcio M, Clarke V, Oppenheim JD, D'Eustachio P, Rush MG. Separate domains of the Ran GTPase interact with different factors to regulate nuclear protein import and RNA processing. Mol Cell Biol. 1995 Apr;15(4):2117–2124. [PMC free article] [PubMed]
  • Rexach M, Blobel G. Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell. 1995 Dec 1;83(5):683–692. [PubMed]
  • Richards SA, Lounsbury KM, Macara IG. The C terminus of the nuclear RAN/TC4 GTPase stabilizes the GDP-bound state and mediates interactions with RCC1, RAN-GAP, and HTF9A/RANBP1. J Biol Chem. 1995 Jun 16;270(24):14405–14411. [PubMed]
  • Saitoh H, Dasso M. The RCC1 protein interacts with Ran, RanBP1, hsc70, and a 340-kDa protein in Xenopus extracts. J Biol Chem. 1995 May 5;270(18):10658–10663. [PubMed]
  • Schlenstedt G, Wong DH, Koepp DM, Silver PA. Mutants in a yeast Ran binding protein are defective in nuclear transport. EMBO J. 1995 Nov 1;14(21):5367–5378. [PubMed]
  • Schneppenheim R, Budde U, Dahlmann N, Rautenberg P. Luminography--a new, highly sensitive visualization method for electrophoresis. Electrophoresis. 1991 May;12(5):367–372. [PubMed]
  • Tartakoff AM, Schneiter R. The nuclear GTPase cycle: promoting peripheralization? Trends Cell Biol. 1995 Jan;5(1):5–8. [PubMed]
  • Weis K, Mattaj IW, Lamond AI. Identification of hSRP1 alpha as a functional receptor for nuclear localization sequences. Science. 1995 May 19;268(5213):1049–1053. [PubMed]
  • Weis K, Ryder U, Lamond AI. The conserved amino-terminal domain of hSRP1 alpha is essential for nuclear protein import. EMBO J. 1996 Apr 15;15(8):1818–1825. [PubMed]
  • Wu J, Matunis MJ, Kraemer D, Blobel G, Coutavas E. Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J Biol Chem. 1995 Jun 9;270(23):14209–14213. [PubMed]
  • Yokoyama N, Hayashi N, Seki T, Panté N, Ohba T, Nishii K, Kuma K, Hayashida T, Miyata T, Aebi U, et al. A giant nucleopore protein that binds Ran/TC4. Nature. 1995 Jul 13;376(6536):184–188. [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press