PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
 
J Cell Biol. 1994 April 2; 125(2): 403–415.
PMCID: PMC2120042

Apoptosis induced by inhibition of intercellular contact

Abstract

The LIM 1863 colon carcinoma cell line grows as structural organoids of goblet and columnar cells around a central lumen and provides a model for the development of stem cells in the normal colon. The organoid structure can be disrupted by removal of calcium from the medium, resulting in a suspension of single cells. Upon readdition of calcium, the cells reform the organoid structure over a period of 24 h, and ultrastructural examination of the reforming cells reveals that this involves a complex process that we have termed clutching. To determine the adhesion molecules involved in organoid formation we attempted to block this process by single cell suspensions of LIM 1863 reseeded in the presence of monoclonal antibodies. An anti-integrin antibody directed against a conformational epitope on the alpha v subunit totally inhibited organoid reformation. As a consequence of this inhibition of cell contact the colon carcinoma cells rapidly underwent apoptosis. Investigations of the apoptotic pathway involved suggested an induction mechanism since the onset of apoptosis in the contact- inhibited cells showed specific increased synthesis of 68- and 72-kD proteins. In addition, immunoblotting of cytosolic and nuclear extracts of the cells revealed the rapid translocation of the tumor suppressor gene product, p53 to the cell nucleus upon induction of apoptosis. These results suggest that cell-cell adhesion may be a vital regulator of colon development overcome in tumor cells by loss of adhesion molecules or of functional p53 protein.

Full Text

The Full Text of this article is available as a PDF (3.4M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Agrez MV, Bates RC, Boyd AW, Burns GF. Arg-Gly-Asp-containing peptides expose novel collagen receptors on fibroblasts: implications for wound healing. Cell Regul. 1991 Dec;2(12):1035–1044. [PMC free article] [PubMed]
  • Bates RC, Rankin LM, Lucas CM, Scott JL, Krissansen GW, Burns GF. Individual embryonic fibroblasts express multiple beta chains in association with the alpha v integrin subunit. Loss of beta 3 expression with cell confluence. J Biol Chem. 1991 Oct 5;266(28):18593–18599. [PubMed]
  • Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature. 1993 Apr 29;362(6423):849–852. [PubMed]
  • Cohen JJ. Apoptosis. Immunol Today. 1993 Mar;14(3):126–130. [PubMed]
  • Cotter TG, Lennon SV, Glynn JG, Martin SJ. Cell death via apoptosis and its relationship to growth, development and differentiation of both tumour and normal cells. Anticancer Res. 1990 Sep-Oct;10(5A):1153–1159. [PubMed]
  • Davies J, Warwick J, Totty N, Philp R, Helfrich M, Horton M. The osteoclast functional antigen, implicated in the regulation of bone resorption, is biochemically related to the vitronectin receptor. J Cell Biol. 1989 Oct;109(4 Pt 1):1817–1826. [PMC free article] [PubMed]
  • Farmer G, Bargonetti J, Zhu H, Friedman P, Prywes R, Prives C. Wild-type p53 activates transcription in vitro. Nature. 1992 Jul 2;358(6381):83–86. [PubMed]
  • Greenwald I, Rubin GM. Making a difference: the role of cell-cell interactions in establishing separate identities for equivalent cells. Cell. 1992 Jan 24;68(2):271–281. [PubMed]
  • Gumbiner BM. Epithelial morphogenesis. Cell. 1992 May 1;69(3):385–387. [PubMed]
  • Hayward IP, Whitehead RH. Patterns of growth and differentiation in the colon carcinoma cell line LIM 1863. Int J Cancer. 1992 Mar 12;50(5):752–759. [PubMed]
  • Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991 Jul 5;253(5015):49–53. [PubMed]
  • Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. [PubMed]
  • Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, Sameshima M, Hase A, Seto Y, Nagata S. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell. 1991 Jul 26;66(2):233–243. [PubMed]
  • Kannan Y, Usami K, Okada M, Shimizu S, Matsuda H. Nerve growth factor suppresses apoptosis of murine neutrophils. Biochem Biophys Res Commun. 1992 Jul 31;186(2):1050–1056. [PubMed]
  • Kapron-Bras C, Fitz-Gibbon L, Jeevaratnam P, Wilkins J, Dedhar S. Stimulation of tyrosine phosphorylation and accumulation of GTP-bound p21ras upon antibody-mediated alpha 2 beta 1 integrin activation in T-lymphoblastic cells. J Biol Chem. 1993 Oct 5;268(28):20701–20704. [PubMed]
  • Kataoka S, Naito M, Fujita N, Ishii H, Ishii S, Yamori T, Nakajima M, Tsuruo T. Control of apoptosis and growth of malignant T lymphoma cells by lymph node stromal cells. Exp Cell Res. 1993 Aug;207(2):271–276. [PubMed]
  • Kaufmann R, Frösch D, Westphal C, Weber L, Klein CE. Integrin VLA-3: ultrastructural localization at cell-cell contact sites of human cell cultures. J Cell Biol. 1989 Oct;109(4 Pt 1):1807–1815. [PMC free article] [PubMed]
  • Kobayashi H, Man S, Graham CH, Kapitain SJ, Teicher BA, Kerbel RS. Acquired multicellular-mediated resistance to alkylating agents in cancer. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3294–3298. [PubMed]
  • Lampugnani MG, Resnati M, Dejana E, Marchisio PC. The role of integrins in the maintenance of endothelial monolayer integrity. J Cell Biol. 1991 Feb;112(3):479–490. [PMC free article] [PubMed]
  • Lane DP. Cancer. p53, guardian of the genome. Nature. 1992 Jul 2;358(6381):15–16. [PubMed]
  • Lane DP. Cancer. A death in the life of p53. Nature. 1993 Apr 29;362(6423):786–787. [PubMed]
  • Liotta LA, Kleinerman J, Saidel GM. Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res. 1974 May;34(5):997–1004. [PubMed]
  • Liotta LA, Saidel MG, Kleinerman J. The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res. 1976 Mar;36(3):889–894. [PubMed]
  • Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature. 1993 Apr 29;362(6423):847–849. [PubMed]
  • Moll UM, Riou G, Levine AJ. Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7262–7266. [PubMed]
  • Montesano R, Schaller G, Orci L. Induction of epithelial tubular morphogenesis in vitro by fibroblast-derived soluble factors. Cell. 1991 Aug 23;66(4):697–711. [PubMed]
  • Namba M, Miyamoto K, Hyodoh F, Iwama T, Utsunomiya J, Fukushima F, Kimoto T. Establishment and characterization of a human colon carcinoma cell line (KMS-4) from a patient with hereditary adenomatosis of the colon and rectum. Int J Cancer. 1983 Dec 15;32(6):697–702. [PubMed]
  • Neiman PE, Thomas SJ, Loring G. Induction of apoptosis during normal and neoplastic B-cell development in the bursa of Fabricius. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5857–5861. [PubMed]
  • Nissen MS, Langan TA, Reeves R. Phosphorylation by cdc2 kinase modulates DNA binding activity of high mobility group I nonhistone chromatin protein. J Biol Chem. 1991 Oct 25;266(30):19945–19952. [PubMed]
  • Oberhammer FA, Pavelka M, Sharma S, Tiefenbacher R, Purchio AF, Bursch W, Schulte-Hermann R. Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor beta 1. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5408–5412. [PubMed]
  • Oehm A, Behrmann I, Falk W, Pawlita M, Maier G, Klas C, Li-Weber M, Richards S, Dhein J, Trauth BC, et al. Purification and molecular cloning of the APO-1 cell surface antigen, a member of the tumor necrosis factor/nerve growth factor receptor superfamily. Sequence identity with the Fas antigen. J Biol Chem. 1992 May 25;267(15):10709–10715. [PubMed]
  • Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature. 1992 Jul 2;358(6381):80–83. [PubMed]
  • Pignatelli M, Bodmer WF. Integrin cell adhesion molecules and colorectal cancer. J Pathol. 1990 Oct;162(2):95–97. [PubMed]
  • Robaye B, Mosselmans R, Fiers W, Dumont JE, Galand P. Tumor necrosis factor induces apoptosis (programmed cell death) in normal endothelial cells in vitro. Am J Pathol. 1991 Feb;138(2):447–453. [PubMed]
  • Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science. 1987 Oct 23;238(4826):491–497. [PubMed]
  • Schwartz LM, Kosz L, Kay BK. Gene activation is required for developmentally programmed cell death. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6594–6598. [PubMed]
  • Shaw P, Bovey R, Tardy S, Sahli R, Sordat B, Costa J. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4495–4499. [PubMed]
  • Ullrich SJ, Anderson CW, Mercer WE, Appella E. The p53 tumor suppressor protein, a modulator of cell proliferation. J Biol Chem. 1992 Aug 5;267(22):15259–15262. [PubMed]
  • Vogelstein B, Kinzler KW. p53 function and dysfunction. Cell. 1992 Aug 21;70(4):523–526. [PubMed]
  • Whitehead RH, Jones JK, Gabriel A, Lukies RE. A new colon carcinoma cell line (LIM1863) that grows as organoids with spontaneous differentiation into crypt-like structures in vitro. Cancer Res. 1987 May 15;47(10):2683–2689. [PubMed]
  • Williams GT. Programmed cell death: apoptosis and oncogenesis. Cell. 1991 Jun 28;65(7):1097–1098. [PubMed]
  • Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306. [PubMed]
  • Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature. 1991 Jul 25;352(6333):345–347. [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press