Search tips
Search criteria 


Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Cell Biol. 1994 March 2; 124(6): 903–913.
PMCID: PMC2119983

Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization


Under nutrient-deficient conditions, the yeast S. cerevisiae sequesters its own cytoplasmic components into vacuoles in the form of "autophagic bodies" (Takeshige, K., M. Baba, S. Tsuboi, T. Noda, and Y. Ohsumi. 1992. J. Cell Biol. 119:301-311). Immunoelectron microscopy showed that two cytosolic marker enzymes, alcohol dehydrogenase and phosphoglycerate kinase, are present in the autophagic bodies at the same densities as in the cytosol, but are not present in vacuolar sap, suggesting that cytosolic enzymes are also taken up into the autophagic bodies. To understand this process, we performed morphological analyses by transmission and immunological electron microscopies using a freeze- substitution fixation method. Spherical structures completely enclosed in a double membrane were found near the vacuoles of protease-deficient mutant cells when the cells were shifted to nutrient-starvation media. Their size, membrane thickness, and contents of double membrane- structures corresponded well with those of autophagic bodies. Sometimes these double membrane structures were found to be in contact with the vacuolar membrane. Furthermore their outer membrane was occasionally seen to be continuous with the vacuolar membrane. Histochemical staining of carbohydrate strongly suggested that the structures with double membranes fused with the vacuoles. These results indicated that these structures are precursors of autophagic bodies, "autophagosomes" in yeast. All the data obtained suggested that the autophagic process in yeast is essentially similar to that of the lysosomal system in mammalian cells.

Full Text

The Full Text of this article is available as a PDF (5.9M).

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press