Search tips
Search criteria 


Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Cell Biol. 1993 December 1; 123(5): 1175–1184.
PMCID: PMC2119877

A spacer protein in the Saccharomyces cerevisiae spindle poly body whose transcript is cell cycle-regulated


Monoclonal antibodies against the 110-kD component of the yeast spindle pole body (SPB) were used to clone the corresponding gene SPC110. SPC110 is identical to NUF1 (Mirzayan, C., C. S. Copeland, and M. Synder. 1992. J. Cell Biol. 116:1319-1332). SPC110/NUF1 has an MluI cell cycle box consensus sequence in its putative promoter region, and we found that the transcript was cell cycle regulated in a similar way to other MluI-regulated transcripts. Spc110p/Nuflp has a long central region with a predicted coiled-coil structure. We expressed this region in Escherichia coli and showed by rotary shadowing that rods of the predicted length were present. The 110-kD component is localized in the SPB to the gap between the central plaque and the sealed ends of the nuclear microtubules near the inner plaque (Rout, M., and J. V. Kilmartin. 1990. J. Cell Biol. 111:1913-1927). We found that rodlike structures bridge this gap. When truncations of SPC110 with deletions in the coiled-coil region of the protein replaced the wild-type gene, the gap between the central plaque and the ends of the microtubules decreased in proportion to the size of the deletion. This suggests that Spc110p connects these two parts of the SPB together and that the coiled-coil domain acts as a spacer element.

Full Text

The Full Text of this article is available as a PDF (2.5M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Barker DG, Johnston LH. Saccharomyces cerevisiae cdc9, a structural gene for yeast DNA ligase which complements Schizosaccharomyces pombe cdc17. Eur J Biochem. 1983 Aug 1;134(2):315–319. [PubMed]
  • Boeke JD, Trueheart J, Natsoulis G, Fink GR. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 1987;154:164–175. [PubMed]
  • Byers B, Goetsch L. Duplication of spindle plaques and integration of the yeast cell cycle. Cold Spring Harb Symp Quant Biol. 1974;38:123–131. [PubMed]
  • Byers B, Goetsch L. Behavior of spindles and spindle plaques in the cell cycle and conjugation of Saccharomyces cerevisiae. J Bacteriol. 1975 Oct;124(1):511–523. [PMC free article] [PubMed]
  • Byers B, Shriver K, Goetsch L. The role of spindle pole bodies and modified microtubule ends in the initiation of microtubule assembly in Saccharomyces cerevisiae. J Cell Sci. 1978 Apr;30:331–352. [PubMed]
  • Cohen C, Parry DA. Alpha-helical coiled coils and bundles: how to design an alpha-helical protein. Proteins. 1990;7(1):1–15. [PubMed]
  • Conde J, Fink GR. A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3651–3655. [PubMed]
  • Dirick L, Moll T, Auer H, Nasmyth K. A central role for SWI6 in modulating cell cycle Start-specific transcription in yeast. Nature. 1992 Jun 11;357(6378):508–513. [PubMed]
  • Furter R, Paravicini G, Aebi M, Braus G, Prantl F, Niederberger P, Hütter R. The TRP4 gene of Saccharomyces cerevisiae: isolation and structural analysis. Nucleic Acids Res. 1986 Aug 26;14(16):6357–6373. [PMC free article] [PubMed]
  • Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. [PubMed]
  • Johnson AL, Barker DG, Johnston LH. Induction of yeast DNA ligase genes in exponential and stationary phase cultures in response to DNA damaging agents. Curr Genet. 1986;11(2):107–112. [PubMed]
  • Johnston LH, Lowndes NF, Johnson AL, Sugino A. A cell-cycle-regulated trans-factor, DSC1, controls expression of DNA synthesis genes in yeast. Cold Spring Harb Symp Quant Biol. 1991;56:169–176. [PubMed]
  • Kassir Y, Kupiec M, Shalom A, Simchen G. Cloning and mapping of CDC40, a Saccharomyces cerevisiae gene with a role in DNA repair. Curr Genet. 1985;9(4):253–257. [PubMed]
  • Katsura I. Determination of bacteriophage lambda tail length by a protein ruler. Nature. 1987 May 7;327(6117):73–75. [PubMed]
  • Katsura I, Hendrix RW. Length determination in bacteriophage lambda tails. Cell. 1984 Dec;39(3 Pt 2):691–698. [PubMed]
  • Kilmartin JV, Adams AE. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J Cell Biol. 1984 Mar;98(3):922–933. [PMC free article] [PubMed]
  • Kunkel TA, Roberts JD, Zakour RA. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. [PubMed]
  • Lowndes NF, Johnson AL, Breeden L, Johnston LH. SWI6 protein is required for transcription of the periodically expressed DNA synthesis genes in budding yeast. Nature. 1992 Jun 11;357(6378):505–508. [PubMed]
  • Marsh JL, Erfle M, Wykes EJ. The pIC plasmid and phage vectors with versatile cloning sites for recombinant selection by insertional inactivation. Gene. 1984 Dec;32(3):481–485. [PubMed]
  • McIntosh EM, Atkinson T, Storms RK, Smith M. Characterization of a short, cis-acting DNA sequence which conveys cell cycle stage-dependent transcription in Saccharomyces cerevisiae. Mol Cell Biol. 1991 Jan;11(1):329–337. [PMC free article] [PubMed]
  • Meuwissen RL, Offenberg HH, Dietrich AJ, Riesewijk A, van Iersel M, Heyting C. A coiled-coil related protein specific for synapsed regions of meiotic prophase chromosomes. EMBO J. 1992 Dec;11(13):5091–5100. [PubMed]
  • Mirzayan C, Copeland CS, Snyder M. The NUF1 gene encodes an essential coiled-coil related protein that is a potential component of the yeast nucleoskeleton. J Cell Biol. 1992 Mar;116(6):1319–1332. [PMC free article] [PubMed]
  • Moens PB, Rapport E. Spindles, spindle plaques, and meiosis in the yeast Saccharomyces cerevisiae (Hansen). J Cell Biol. 1971 Aug;50(2):344–361. [PMC free article] [PubMed]
  • Nagai K, Thøgersen HC. Synthesis and sequence-specific proteolysis of hybrid proteins produced in Escherichia coli. Methods Enzymol. 1987;153:461–481. [PubMed]
  • Nasmyth K. At least 1400 base pairs of 5'-flanking DNA is required for the correct expression of the HO gene in yeast. Cell. 1985 Aug;42(1):213–223. [PubMed]
  • Nasmyth K, Adolf G, Lydall D, Seddon A. The identification of a second cell cycle control on the HO promoter in yeast: cell cycle regulation of SW15 nuclear entry. Cell. 1990 Aug 24;62(4):631–647. [PubMed]
  • Page BD, Snyder M. CIK1: a developmentally regulated spindle pole body-associated protein important for microtubule functions in Saccharomyces cerevisiae. Genes Dev. 1992 Aug;6(8):1414–1429. [PubMed]
  • Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. [PubMed]
  • Peterson JB, Gray RH, Ris H. Meiotic spindle plaques in Saccharomyces cerevisiae. J Cell Biol. 1972 Jun;53(3):837–841. [PMC free article] [PubMed]
  • Rose MD, Fink GR. KAR1, a gene required for function of both intranuclear and extranuclear microtubules in yeast. Cell. 1987 Mar 27;48(6):1047–1060. [PubMed]
  • Rothstein RJ. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. [PubMed]
  • Rout MP, Kilmartin JV. Components of the yeast spindle and spindle pole body. J Cell Biol. 1990 Nov;111(5 Pt 1):1913–1927. [PMC free article] [PubMed]
  • Rout MP, Kilmartin JV. Yeast spindle pole body components. Cold Spring Harb Symp Quant Biol. 1991;56:687–692. [PubMed]
  • Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. [PubMed]
  • Skehel JM, Pilkington SJ, Runswick MJ, Fearnley IM, Walker JE. NADH:ubiquinone oxidoreductase from bovine heart mitochondria. Complementary DNA sequence of the import precursor of the 10 kDa subunit of the flavoprotein fragment. FEBS Lett. 1991 Apr 22;282(1):135–138. [PubMed]
  • Smith DB, Johnson KS. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. [PubMed]
  • Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. [PubMed]
  • Sym M, Engebrecht JA, Roeder GS. ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell. 1993 Feb 12;72(3):365–378. [PubMed]
  • Tyler JM, Branton D. Rotary shadowing of extended molecules dried from glycerol. J Ultrastruct Res. 1980 May;71(2):95–102. [PubMed]
  • Vallen EA, Scherson TY, Roberts T, van Zee K, Rose MD. Asymmetric mitotic segregation of the yeast spindle pole body. Cell. 1992 May 1;69(3):505–515. [PubMed]
  • Way M, Pope B, Gooch J, Hawkins M, Weeds AG. Identification of a region in segment 1 of gelsolin critical for actin binding. EMBO J. 1990 Dec;9(12):4103–4109. [PubMed]
  • Wehland J, Schröder HC, Weber K. Amino acid sequence requirements in the epitope recognized by the alpha-tubulin-specific rat monoclonal antibody YL 1/2. EMBO J. 1984 Jun;3(6):1295–1300. [PubMed]
  • Wente SR, Rout MP, Blobel G. A new family of yeast nuclear pore complex proteins. J Cell Biol. 1992 Nov;119(4):705–723. [PMC free article] [PubMed]
  • White JH, Barker DG, Nurse P, Johnston LH. Periodic transcription as a means of regulating gene expression during the cell cycle: contrasting modes of expression of DNA ligase genes in budding and fission yeast. EMBO J. 1986 Jul;5(7):1705–1709. [PubMed]
  • White JH, Green SR, Barker DG, Dumas LB, Johnston LH. The CDC8 transcript is cell cycle regulated in yeast and is expressed coordinately with CDC9 and CDC21 at a point preceding histone transcription. Exp Cell Res. 1987 Jul;171(1):223–231. [PubMed]
  • Winey M, Goetsch L, Baum P, Byers B. MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication. J Cell Biol. 1991 Aug;114(4):745–754. [PMC free article] [PubMed]
  • Young RA, Davis RW. Yeast RNA polymerase II genes: isolation with antibody probes. Science. 1983 Nov 18;222(4625):778–782. [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press