Search tips
Search criteria 


Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Cell Biol. 1993 August 1; 122(3): 653–661.
PMCID: PMC2119660

A Chlamydomonas outer arm dynein mutant with a truncated beta heavy chain


A new allele of the Chlamydomonas oda4 flagellar mutant (oda4-s7) possessing abnormal outer dynein arms was isolated. Unlike the previously described oda4 axoneme lacking all three (alpha, beta, and gamma) outer-arm dynein heavy chains, the oda4-s7 axoneme contains the alpha and gamma heavy chains and a novel peptide with a molecular mass of approximately 160 kD. The peptide reacts with a mAb (18 beta B) that recognizes an epitope on the NH2-terminal part of the beta heavy chain. These observations indicate that this mutant has a truncated beta heavy chain, and that the NH2-terminal part of the beta heavy chain is important for the stable assembly of the outer arms. In averaged electron microscopic images of outer arms from cross sections of axonemes, the mutant outer arm lacks its mid-portion, producing a forked appearance. Together with our previous finding that the mutant oda11 lacks the alpha heavy chain and the outermost portion of the arm (Sakakibara, H., D. R. Mitchell, and R. Kamiya. 1991. J. Cell Biol. 113:615-622), this result defines the approximate locations of the three outer arm heavy chains in the axonemal cross section. The swimming velocity of oda4-s7 is 65 +/- 8 microns/s, close to that of oda4 which lacks the entire outer arm (62 +/- 8 microns/s) but significantly lower than the velocities of wild type (194 +/- 23 microns/s) and oda11 (119 +/- 17 microns/s). Thus, the lack of the beta heavy chain impairs outer-arm function more seriously than does the lack of the alpha heavy chain, suggesting that the alpha and beta chains play different roles in outer arm function.

Full Text

The Full Text of this article is available as a PDF (2.1M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. [PubMed]
  • Brokaw CJ, Kamiya R. Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil Cytoskeleton. 1987;8(1):68–75. [PubMed]
  • Gibbons IR. Cilia and flagella of eukaryotes. J Cell Biol. 1981 Dec;91(3 Pt 2):107s–124s. [PMC free article] [PubMed]
  • Goodenough U, Heuser J. Structural comparison of purified dynein proteins with in situ dynein arms. J Mol Biol. 1984 Dec 25;180(4):1083–1118. [PubMed]
  • Hoops HJ, Witman GB. Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella. J Cell Biol. 1983 Sep;97(3):902–908. [PMC free article] [PubMed]
  • Huang B, Piperno G, Luck DJ. Paralyzed flagella mutants of Chlamydomonas reinhardtii. Defective for axonemal doublet microtubule arms. J Biol Chem. 1979 Apr 25;254(8):3091–3099. [PubMed]
  • Huang B, Ramanis Z, Luck DJ. Suppressor mutations in Chlamydomonas reveal a regulatory mechanism for Flagellar function. Cell. 1982 Jan;28(1):115–124. [PubMed]
  • Jarvik JW, Rosenbaum JL. Oversized flagellar membrane protein in paralyzed mutants of Chlamydomonas reinhardrii. J Cell Biol. 1980 May;85(2):258–272. [PMC free article] [PubMed]
  • Johnson KA, Wall JS. Structure and molecular weight of the dynein ATPase. J Cell Biol. 1983 Mar;96(3):669–678. [PMC free article] [PubMed]
  • Kamiya R. Mutations at twelve independent loci result in absence of outer dynein arms in Chylamydomonas reinhardtii. J Cell Biol. 1988 Dec;107(6 Pt 1):2253–2258. [PMC free article] [PubMed]
  • Kamiya R, Hasegawa E. Intrinsic difference in beat frequency between the two flagella of Chlamydomonas reinhardtii. Exp Cell Res. 1987 Nov;173(1):299–304. [PubMed]
  • Kamiya R, Okamoto M. A mutant of Chlamydomonas reinhardtii that lacks the flagellar outer dynein arm but can swim. J Cell Sci. 1985 Mar;74:181–191. [PubMed]
  • Kamiya R, Kurimoto E, Muto E. Two types of Chlamydomonas flagellar mutants missing different components of inner-arm dynein. J Cell Biol. 1991 Feb;112(3):441–447. [PMC free article] [PubMed]
  • Kyhse-Andersen J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods. 1984 Dec;10(3-4):203–209. [PubMed]
  • King SM, Witman GB. Structure of the alpha and beta heavy chains of the outer arm dynein from Chlamydomonas flagella. Masses of chains and sites of ultraviolet-induced vanadate-dependent cleavage. J Biol Chem. 1987 Dec 25;262(36):17596–17604. [PubMed]
  • King SM, Witman GB. Structure of the alpha and beta heavy chains of the outer arm dynein from Chlamydomonas flagella. Location of epitopes and protease-sensitive sites. J Biol Chem. 1988 Jul 5;263(19):9244–9255. [PubMed]
  • King SM, Witman GB. Structure of the gamma heavy chain of the outer arm dynein from Chlamydomonas flagella. J Cell Biol. 1988 Nov;107(5):1799–1808. [PMC free article] [PubMed]
  • King SM, Witman GB. Localization of an intermediate chain of outer arm dynein by immunoelectron microscopy. J Biol Chem. 1990 Nov 15;265(32):19807–19811. [PubMed]
  • King SM, Otter T, Witman GB. Characterization of monoclonal antibodies against Chlamydomonas flagellar dyneins by high-resolution protein blotting. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4717–4721. [PubMed]
  • King SM, Otter T, Witman GB. Purification and characterization of Chlamydomonas flagellar dyneins. Methods Enzymol. 1986;134:291–306. [PubMed]
  • King SM, Wilkerson CG, Witman GB. The Mr 78,000 intermediate chain of Chlamydomonas outer arm dynein interacts with alpha-tubulin in situ. J Biol Chem. 1991 May 5;266(13):8401–8407. [PubMed]
  • Kodama T, Fukui K, Kometani K. The initial phosphate burst in ATP hydrolysis by myosin and subfragment-1 as studied by a modified malachite green method for determination of inorganic phosphate. J Biochem. 1986 May;99(5):1465–1472. [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • LEVINE RP, EBERSOLD WT. The genetics and cytology of Chlamydomonas. Annu Rev Microbiol. 1960;14:197–216. [PubMed]
  • Merril CR, Goldman D, Sedman SA, Ebert MH. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. [PubMed]
  • Mitchell DR, Rosenbaum JL. A motile Chlamydomonas flagellar mutant that lacks outer dynein arms. J Cell Biol. 1985 Apr;100(4):1228–1234. [PMC free article] [PubMed]
  • Mitchell DR, Rosenbaum JL. Protein-protein interactions in the 18S ATPase of Chlamydomonas outer dynein arms. Cell Motil Cytoskeleton. 1986;6(5):510–520. [PubMed]
  • Mitchell DR, Kang Y. Identification of oda6 as a Chlamydomonas dynein mutant by rescue with the wild-type gene. J Cell Biol. 1991 May;113(4):835–842. [PMC free article] [PubMed]
  • Moss AG, Gatti JL, Witman GB. The motile beta/IC1 subunit of sea urchin sperm outer arm dynein does not form a rigor bond. J Cell Biol. 1992 Sep;118(5):1177–1188. [PMC free article] [PubMed]
  • Moss AG, Sale WS, Fox LA, Witman GB. The alpha subunit of sea urchin sperm outer arm dynein mediates structural and rigor binding to microtubules. J Cell Biol. 1992 Sep;118(5):1189–1200. [PMC free article] [PubMed]
  • Paschal BM, King SM, Moss AG, Collins CA, Vallee RB, Witman GB. Isolated flagellar outer arm dynein translocates brain microtubules in vitro. Nature. 1987 Dec 17;330(6149):672–674. [PubMed]
  • Pfister KK, Witman GB. Subfractionation of Chlamydomonas 18 S dynein into two unique subunits containing ATPase activity. J Biol Chem. 1984 Oct 10;259(19):12072–12080. [PubMed]
  • Pfister KK, Fay RB, Witman GB. Purification and polypeptide composition of dynein ATPases from Chlamydomonas flagella. Cell Motil. 1982;2(6):525–547. [PubMed]
  • Piperno G, Luck DJ. Axonemal adenosine triphosphatases from flagella of Chlamydomonas reinhardtii. Purification of two dyneins. J Biol Chem. 1979 Apr 25;254(8):3084–3090. [PubMed]
  • Ranum LP, Thompson MD, Schloss JA, Lefebvre PA, Silflow CD. Mapping flagellar genes in Chlamydomonas using restriction fragment length polymorphisms. Genetics. 1988 Sep;120(1):109–122. [PubMed]
  • Sakakibara H, Mitchell DR, Kamiya R. A Chlamydomonas outer arm dynein mutant missing the alpha heavy chain. J Cell Biol. 1991 May;113(3):615–622. [PMC free article] [PubMed]
  • Sale WS, Fox LA. Isolated beta-heavy chain subunit of dynein translocates microtubules in vitro. J Cell Biol. 1988 Nov;107(5):1793–1797. [PMC free article] [PubMed]
  • Sale WS, Goodenough UW, Heuser JE. The substructure of isolated and in situ outer dynein arms of sea urchin sperm flagella. J Cell Biol. 1985 Oct;101(4):1400–1412. [PMC free article] [PubMed]
  • Takada S, Sakakibara H, Kamiya R. Three-headed outer arm dynein from Chlamydomonas that can functionally combine with outer-arm-missing axonemes. J Biochem. 1992 Jun;111(6):758–762. [PubMed]
  • Vale RD, Toyoshima YY. Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia. Cell. 1988 Feb 12;52(3):459–469. [PubMed]
  • Watanabe T, Flavin M. Two types of adenosine triphosphatase from flagella of Chlamydomonas reinhardi. Biochem Biophys Res Commun. 1973 May 1;52(1):195–201. [PubMed]
  • Witman GB, Carlson K, Berliner J, Rosenbaum JL. Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes. J Cell Biol. 1972 Sep;54(3):507–539. [PMC free article] [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press