Search tips
Search criteria 


Logo of jexpmedHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Exp Med. 1992 October 1; 176(4): 1053–1062.
PMCID: PMC2119375

Myristyl acylation of the tumor necrosis factor alpha precursor on specific lysine residues


NH2-terminal glycine myristyl acylation is a cotranslational modification that affects both protein localization and function. However, several proteins that lack NH2-terminal glycine residues, including the interleukin 1 (IL-1) precursors, also contain covalently linked myristate. To date, the site(s) of acylation of these proteins has not been determined. During an evaluation of IL-1 acylation, it was observed that [3H]myristate-labeled human monocyte lysates contained a prominent 26-kD myristylated protein, which was identified as the tumor necrosis factor alpha (TNF) precursor protein on the basis of specific immune precipitation. Radioimmunoprecipitates from the supernates of labeled monocytes indicated that the processed or mature 17-kD form of TNF does not contain myristate, suggesting that the site of acylation occurs within the 76-amino acid propiece of the precursor molecule. As the TNF precursor does not contain an NH2-terminal glycine, we hypothesized that myristyl acylation occurs on the N-epsilon-NH2 groups of lysine, of which two are present in the propiece (K19K20). Synthetic peptides were designed to include all seven lysine residues present within the entire 26-kD TNF precursor, and used in an in vitro myristyl acylation assay containing peptide, myristyl-CoA, and monocyte lysate as a source of enzyme. Analysis of reaction products by reverse phase high performance liquid chromatography and gas phase sequencing demonstrated the exclusive myristyl acylation of K19 and K20, consistent with the presence in monocytes of a specific lysyl N-epsilon- NH2-myristyl transferase activity. The acylated lysine residues are located immediately downstream from a hydrophobic, probable membrane- spanning segment of the propiece. Specific myristyl acylation of the TNF propiece may facilitate membrane insertion or anchoring of this critical inflammatory mediator.

Full Text

The Full Text of this article is available as a PDF (2.2M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Gordon JI. Protein N-myristoylation: simple questions, unexpected answers. Clin Res. 1990 Oct;38(3):517–528. [PubMed]
  • Duronio RJ, Towler DA, Heuckeroth RO, Gordon JI. Disruption of the yeast N-myristoyl transferase gene causes recessive lethality. Science. 1989 Feb 10;243(4892):796–800. [PubMed]
  • Hedo JA, Collier E, Watkinson A. Myristyl and palmityl acylation of the insulin receptor. J Biol Chem. 1987 Jan 25;262(3):954–957. [PubMed]
  • Pillai S, Baltimore D. Myristoylation and the post-translational acquisition of hydrophobicity by the membrane immunoglobulin heavy-chain polypeptide in B lymphocytes. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7654–7658. [PubMed]
  • Bursten SL, Locksley RM, Ryan JL, Lovett DH. Acylation of monocyte and glomerular mesangial cell proteins. Myristyl acylation of the interleukin 1 precursors. J Clin Invest. 1988 Nov;82(5):1479–1488. [PMC free article] [PubMed]
  • Cho W, Tomasselli AG, Heinrikson RL, Kézdy FJ. The chemical basis for interfacial activation of monomeric phospholipases A2. Autocatalytic derivatization of the enzyme by acyl transfer from substrate. J Biol Chem. 1988 Aug 15;263(23):11237–11241. [PubMed]
  • Tomasselli AG, Hui J, Fisher J, Zürcher-Neely H, Reardon IM, Oriaku E, Kézdy FJ, Heinrikson RL. Dimerization and activation of porcine pancreatic phospholipase A2 via substrate level acylation of lysine 56. J Biol Chem. 1989 Jun 15;264(17):10041–10047. [PubMed]
  • Fiers W. Tumor necrosis factor. Characterization at the molecular, cellular and in vivo level. FEBS Lett. 1991 Jul 22;285(2):199–212. [PubMed]
  • Kriegler M, Perez C, DeFay K, Albert I, Lu SD. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell. 1988 Apr 8;53(1):45–53. [PubMed]
  • Decker T, Lohmann-Matthes ML, Gifford GE. Cell-associated tumor necrosis factor (TNF) as a killing mechanism of activated cytotoxic macrophages. J Immunol. 1987 Feb 1;138(3):957–962. [PubMed]
  • Perez C, Albert I, DeFay K, Zachariades N, Gooding L, Kriegler M. A nonsecretable cell surface mutant of tumor necrosis factor (TNF) kills by cell-to-cell contact. Cell. 1990 Oct 19;63(2):251–258. [PubMed]
  • O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed]
  • Ui N. Isoelectric points and conformation of proteins. I. Effect of urea on the behavior of some proteins in isoelectric focusing. Biochim Biophys Acta. 1971 Mar 23;229(3):567–581. [PubMed]
  • Panuska JR, Fukui K, Parker CW. Secreted proteins of human monocytes. Analysis by two-dimensional gel electrophoresis and effect of lipopolysaccharide. Biochem J. 1988 Jan 15;249(2):501–511. [PubMed]
  • Towler D, Glaser L. Protein fatty acid acylation: enzymatic synthesis of an N-myristoylglycyl peptide. Proc Natl Acad Sci U S A. 1986 May;83(9):2812–2816. [PubMed]
  • Olson EN. Modification of proteins with covalent lipids. Prog Lipid Res. 1988;27(3):177–197. [PubMed]
  • Towler DA, Eubanks SR, Towery DS, Adams SP, Glaser L. Amino-terminal processing of proteins by N-myristoylation. Substrate specificity of N-myristoyl transferase. J Biol Chem. 1987 Jan 25;262(3):1030–1036. [PubMed]
  • Towler D, Glaser L. Acylation of cellular proteins with endogenously synthesized fatty acids. Biochemistry. 1986 Feb 25;25(4):878–884. [PubMed]
  • Van der Wiele FC, Atsma W, Dijkman R, Schreurs AM, Slotboom AJ, De Haas GH. Site-specific epsilon-NH2 monoacylation of pancreatic phospholipase A2. 1. Preparation and properties. Biochemistry. 1988 Mar 8;27(5):1683–1688. [PubMed]
  • Kamps MP, Buss JE, Sefton BM. Mutation of NH2-terminal glycine of p60src prevents both myristoylation and morphological transformation. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4625–4628. [PubMed]
  • Rein A, McClure MR, Rice NR, Luftig RB, Schultz AM. Myristylation site in Pr65gag is essential for virus particle formation by Moloney murine leukemia virus. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7246–7250. [PubMed]
  • Buss JE, Solski PA, Schaeffer JP, MacDonald MJ, Der CJ. Activation of the cellular proto-oncogene product p21Ras by addition of a myristylation signal. Science. 1989 Mar 24;243(4898):1600–1603. [PubMed]
  • Jones TL, Simonds WF, Merendino JJ, Jr, Brann MR, Spiegel AM. Myristoylation of an inhibitory GTP-binding protein alpha subunit is essential for its membrane attachment. Proc Natl Acad Sci U S A. 1990 Jan;87(2):568–572. [PubMed]
  • Wang AM, Creasey AA, Ladner MB, Lin LS, Strickler J, Van Arsdell JN, Yamamoto R, Mark DF. Molecular cloning of the complementary DNA for human tumor necrosis factor. Science. 1985 Apr 12;228(4696):149–154. [PubMed]
  • von Heijne G, Gavel Y. Topogenic signals in integral membrane proteins. Eur J Biochem. 1988 Jul 1;174(4):671–678. [PubMed]
  • Chensue SW, Remick DG, Shmyr-Forsch C, Beals TF, Kunkel SL. Immunohistochemical demonstration of cytoplasmic and membrane-associated tumor necrosis factor in murine macrophages. Am J Pathol. 1988 Dec;133(3):564–572. [PubMed]
  • Bakouche O, Ichinose Y, Heicappell R, Fidler IJ, Lachman LB. Plasma membrane-associated tumor necrosis factor. A non-integral membrane protein possibly bound to its own receptor. J Immunol. 1988 Feb 15;140(4):1142–1147. [PubMed]
  • Luettig B, Decker T, Lohmann-Matthes ML. Evidence for the existence of two forms of membrane tumor necrosis factor: an integral protein and a molecule attached to its receptor. J Immunol. 1989 Dec 15;143(12):4034–4038. [PubMed]
  • Jue DM, Sherry B, Luedke C, Manogue KR, Cerami A. Processing of newly synthesized cachectin/tumor necrosis factor in endotoxin-stimulated macrophages. Biochemistry. 1990 Sep 11;29(36):8371–8377. [PubMed]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press