PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
 
J Cell Biol. 1990 October 1; 111(4): 1713–1723.
PMCID: PMC2116239

Echistatin is a potent inhibitor of bone resorption in culture

Abstract

The venom protein, s-echistatin, originally derived from the saw-scaled viper Echis carinatus, was found to be a potent inhibitor of bone resorption by isolated osteoclasts. This Arg24-Gly25-Asp26-(RGD)- containing protein inhibited the excavation of bone slices by rat osteoclasts (IC50 = 0.1 nM). It also inhibited the release of [3H]proline from labeled bone particles by chicken osteoclasts (IC50 = 100 nM). By comparison, the tetrapeptide Arg-Gly-Asp-Ser (RGDS) inhibited resorption by rat or chicken osteoclasts with an IC50 of 0.1 mM while ala24-echistatin was inactive. Video microscopy showed that rat osteoclast attachment to substrate was more sensitive to s- echistatin than was the attachment of mononuclear cells or chicken osteoclasts. The difference in sensitivity of rat and chicken osteoclasts to s-echistatin may be due to differences between receptors on rat and chicken osteoclasts for s-echistatin. Antibody localization of echistatin on these cells showed much greater echistatin binding to rat osteoclasts than to chicken osteoclasts. Laser scanning confocal microscopy after immunohistochemical staining showed that s-echistatin binds to osteoclasts, that s-echistatin receptors are most abundant at the osteoclast/glass interface, and that s-echistatin colocalizes with vinculin. Confocal interference reflection microscopy of osteoclasts incubated with s-echistatin, demonstrated colocalization of s- echistatin with the outer edges of clusters of grey contacts at the tips of some lamellipodia. Identification of the echistatin receptor as an integrin was confirmed by colocalization of echistatin fluorescence with staining for an alpha-like subunit. Attachment of bone particles labeled with [3H]proline to chicken osteoclasts confirmed that the mechanism of action of echistatin was to inhibit osteoclast binding to bone presumably by disrupting adhesion structures. These data demonstrate that osteoclasts bind to bone via an RGD-sequence as an obligatory step in bone resorption, that this RGD-binding integrin is at adhesion structures, and that it colocalizes with vinculin and has an alpha-like subunit.

Full Text

The Full Text of this article is available as a PDF (4.6M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Arnett TR, Dempster DW. A comparative study of disaggregated chick and rat osteoclasts in vitro: effects of calcitonin and prostaglandins. Endocrinology. 1987 Feb;120(2):602–608. [PubMed]
  • Bailey J, Gingell D. Contacts of chick fibroblasts on glass: results and limitations of quantitative interferometry. J Cell Sci. 1988 Jun;90(Pt 2):215–224. [PubMed]
  • Baron R, Neff L, Brown W, Courtoy PJ, Louvard D, Farquhar MG. Polarized secretion of lysosomal enzymes: co-distribution of cation-independent mannose-6-phosphate receptors and lysosomal enzymes along the osteoclast exocytic pathway. J Cell Biol. 1988 Jun;106(6):1863–1872. [PMC free article] [PubMed]
  • Bereiter-Hahn J, Fox CH, Thorell B. Quantitative reflection contrast microscopy of living cells. J Cell Biol. 1979 Sep;82(3):767–779. [PMC free article] [PubMed]
  • Blair HC, Kahn AJ, Crouch EC, Jeffrey JJ, Teitelbaum SL. Isolated osteoclasts resorb the organic and inorganic components of bone. J Cell Biol. 1986 Apr;102(4):1164–1172. [PMC free article] [PubMed]
  • Blair HC, Teitelbaum SL, Ghiselli R, Gluck S. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science. 1989 Aug 25;245(4920):855–857. [PubMed]
  • Chambers TJ, Revell PA, Fuller K, Athanasou NA. Resorption of bone by isolated rabbit osteoclasts. J Cell Sci. 1984 Mar;66:383–399. [PubMed]
  • Chambers TJ, McSheehy PM, Thomson BM, Fuller K. The effect of calcium-regulating hormones and prostaglandins on bone resorption by osteoclasts disaggregated from neonatal rabbit bones. Endocrinology. 1985 Jan;116(1):234–239. [PubMed]
  • Chambers TJ, Fuller K, Darby JA, Pringle JA, Horton MA. Monoclonal antibodies against osteoclasts inhibit bone resorption in vitro. Bone Miner. 1986 Apr;1(2):127–135. [PubMed]
  • Cheresh DA, Smith JW, Cooper HM, Quaranta V. A novel vitronectin receptor integrin (alpha v beta x) is responsible for distinct adhesive properties of carcinoma cells. Cell. 1989 Apr 7;57(1):59–69. [PubMed]
  • Davies J, Warwick J, Totty N, Philp R, Helfrich M, Horton M. The osteoclast functional antigen, implicated in the regulation of bone resorption, is biochemically related to the vitronectin receptor. J Cell Biol. 1989 Oct;109(4 Pt 1):1817–1826. [PMC free article] [PubMed]
  • Dedhar S, Argraves WS, Suzuki S, Ruoslahti E, Pierschbacher MD. Human osteosarcoma cells resistant to detachment by an Arg-Gly-Asp-containing peptide overproduce the fibronectin receptor. J Cell Biol. 1987 Sep;105(3):1175–1182. [PMC free article] [PubMed]
  • Freed E, Gailit J, van der Geer P, Ruoslahti E, Hunter T. A novel integrin beta subunit is associated with the vitronectin receptor alpha subunit (alpha v) in a human osteosarcoma cell line and is a substrate for protein kinase C. EMBO J. 1989 Oct;8(10):2955–2965. [PubMed]
  • Gan ZR, Gould RJ, Jacobs JW, Friedman PA, Polokoff MA. Echistatin. A potent platelet aggregation inhibitor from the venom of the viper, Echis carinatus. J Biol Chem. 1988 Dec 25;263(36):19827–19832. [PubMed]
  • Garsky VM, Lumma PK, Freidinger RM, Pitzenberger SM, Randall WC, Veber DF, Gould RJ, Friedman PA. Chemical synthesis of echistatin, a potent inhibitor of platelet aggregation from Echis carinatus: synthesis and biological activity of selected analogs. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4022–4026. [PubMed]
  • Huang TF, Holt JC, Kirby EP, Niewiarowski S. Trigramin: primary structure and its inhibition of von Willebrand factor binding to glycoprotein IIb/IIIa complex on human platelets. Biochemistry. 1989 Jan 24;28(2):661–666. [PubMed]
  • Hynes RO. Integrins: a family of cell surface receptors. Cell. 1987 Feb 27;48(4):549–554. [PubMed]
  • Kajiji S, Tamura RN, Quaranta V. A novel integrin (alpha E beta 4) from human epithelial cells suggests a fourth family of integrin adhesion receptors. EMBO J. 1989 Mar;8(3):673–680. [PubMed]
  • Kanehisa J, Heersche JN. Osteoclastic bone resorption: in vitro analysis of the rate of resorption and migration of individual osteoclasts. Bone. 1988;9(2):73–79. [PubMed]
  • Knudsen KA, Tuszynski GP, Huang TF, Niewiarowski S. Trigramin, an RGD-containing peptide from snake venom, inhibits cell-substratum adhesion of human melanoma cells. Exp Cell Res. 1988 Nov;179(1):42–49. [PubMed]
  • Marchisio PC, Cirillo D, Naldini L, Primavera MV, Teti A, Zambonin-Zallone A. Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J Cell Biol. 1984 Nov;99(5):1696–1705. [PMC free article] [PubMed]
  • Oldberg A, Franzén A, Heinegård D. The primary structure of a cell-binding bone sialoprotein. J Biol Chem. 1988 Dec 25;263(36):19430–19432. [PubMed]
  • Oldberg A, Franzén A, Heinegård D, Pierschbacher M, Ruoslahti E. Identification of a bone sialoprotein receptor in osteosarcoma cells. J Biol Chem. 1988 Dec 25;263(36):19433–19436. [PubMed]
  • Pierce AM, Lindskog S. Evidence for capping of Fc gamma receptors on osteoclasts. Calcif Tissue Int. 1986 Aug;39(2):109–116. [PubMed]
  • Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science. 1987 Oct 23;238(4826):491–497. [PubMed]
  • Sato M, Grasser W. Effects of bisphosphonates on isolated rat osteoclasts as examined by reflected light microscopy. J Bone Miner Res. 1990 Jan;5(1):31–40. [PubMed]
  • Shebuski RJ, Ramjit DR, Bencen GH, Polokoff MA. Characterization and platelet inhibitory activity of bitistatin, a potent arginine-glycine-aspartic acid-containing peptide from the venom of the viper Bitis arietans. J Biol Chem. 1989 Dec 25;264(36):21550–21556. [PubMed]
  • Taylor ML, Boyde A, Jones SJ. The effect of fluoride on the patterns of adherence of osteoclasts cultured on and resorbing dentine: a 3-D assessment of vinculin-labelled cells using confocal optical microscopy. Anat Embryol (Berl) 1989;180(5):427–435. [PubMed]
  • Turksen K, Kanehisa J, Opas M, Heersche JN, Aubin JE. Adhesion patterns and cytoskeleton of rabbit osteoclasts on bone slices and glass. J Bone Miner Res. 1988 Aug;3(4):389–400. [PubMed]
  • Vaes G. Cellular biology and biochemical mechanism of bone resorption. A review of recent developments on the formation, activation, and mode of action of osteoclasts. Clin Orthop Relat Res. 1988 Jun;(231):239–271. [PubMed]
  • Zambonin Zallone A, Teti A, Primavera MV. Isolated osteoclasts in primary culture: first observations on structure and survival in culture media. Anat Embryol (Berl) 1982 Dec;165(3):405–413. [PubMed]
  • Zambonin-Zallone A, Teti A, Grano M, Rubinacci A, Abbadini M, Gaboli M, Marchisio PC. Immunocytochemical distribution of extracellular matrix receptors in human osteoclasts: a beta 3 integrin is colocalized with vinculin and talin in the podosomes of osteoclastoma giant cells. Exp Cell Res. 1989 Jun;182(2):645–652. [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press