PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
 
J Cell Biol. 1990 June 1; 110(6): 2167–2174.
PMCID: PMC2116124

The activation dependent adhesion of macrophages to laminin involves cytoskeletal anchoring and phosphorylation of the alpha 6 beta 1 integrin

Abstract

Macrophages require activation with either PMA (Mercurio, A. M., and L. M. Shaw. 1988. J. Cell Biol. 107:1873-1880) or interferon-gamma (Shaw, L. M., and A. M. Mercurio. 1989. J. Exp. Med. 169:303-308) to adhere to a laminin substratum. In the present study, we identified an integrin laminin receptor on macrophages and characterized cellular changes that occur in response to PMA activation that facilitate laminin adhesion. A monoclonal antibody (GoH3) that recognizes the integrin alpha 6 subunit (Sonnenberg, A., H. Janssen, F. Hogervorst, J. Calafat, and J. Hilgers. 1987. J. Biol. Chem. 262:10376-10383) specifically inhibited adhesion to laminin-coated surfaces. This antibody precipitated an alpha 6 beta 1 heterodimer (Mr 130/110 kD) from 125I surface-labeled macrophages. The amount of radiolabeled receptor on the cell surface did not increase after PMA activation. Thus, the induction of laminin adhesion cannot be attributed to de novo or increased surface expression of alpha 6 beta 1. By initially removing the Triton X-100-soluble fraction of macrophages and then disrupting the remaining cytoskeletal framework, we observed that 75% of the alpha 6 beta 1 heterodimer on the cell surface is anchored to the cytoskeleton in macrophages that had adhered to a laminin substratum in response to PMA. Significant cytoskeletal anchoring of this receptor was not observed in macrophages that had adhered to fibronectin or tissue culture plastic, nor was it seen in nonadherent cells. PMA also induced phosphorylation of the cytoplasmic domain of the alpha 6 subunit, but not the beta 1 subunit. Phosphorylated alpha 6 was localized to the cytoskeletal fraction only in macrophages plated on a laminin substratum. In summary, our results support a mechanism for the regulation of macrophage adhesion to laminin that involves specific and dynamic matrix integrin-cytoskeletal interactions that may be facilitated by integrin phosphorylation.

Full Text

The Full Text of this article is available as a PDF (1.3M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Buck CA, Horwitz AF. Integrin, a transmembrane glycoprotein complex mediating cell-substratum adhesion. J Cell Sci Suppl. 1987;8:231–250. [PubMed]
  • Burridge K, Fath K, Kelly T, Nuckolls G, Turner C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol. 1988;4:487–525. [PubMed]
  • Chatila TA, Geha RS, Arnaout MA. Constitutive and stimulus-induced phosphorylation of CD11/CD18 leukocyte adhesion molecules. J Cell Biol. 1989 Dec;109(6 Pt 2):3435–3444. [PMC free article] [PubMed]
  • Clément B, Segui-Real B, Savagner P, Kleinman HK, Yamada Y. Hepatocyte attachment to laminin is mediated through multiple receptors. J Cell Biol. 1990 Jan;110(1):185–192. [PMC free article] [PubMed]
  • Cochet C, Kashles O, Chambaz EM, Borrello I, King CR, Schlessinger J. Demonstration of epidermal growth factor-induced receptor dimerization in living cells using a chemical covalent cross-linking agent. J Biol Chem. 1988 Mar 5;263(7):3290–3295. [PubMed]
  • Dahl SC, Grabel LB. Integrin phosphorylation is modulated during the differentiation of F-9 teratocarcinoma stem cells. J Cell Biol. 1989 Jan;108(1):183–190. [PMC free article] [PubMed]
  • Danilov YN, Juliano RL. Phorbol ester modulation of integrin-mediated cell adhesion: a postreceptor event. J Cell Biol. 1989 May;108(5):1925–1933. [PMC free article] [PubMed]
  • Fey EG, Wan KM, Penman S. Epithelial cytoskeletal framework and nuclear matrix-intermediate filament scaffold: three-dimensional organization and protein composition. J Cell Biol. 1984 Jun;98(6):1973–1984. [PMC free article] [PubMed]
  • Gehlsen KR, Dillner L, Engvall E, Ruoslahti E. The human laminin receptor is a member of the integrin family of cell adhesion receptors. Science. 1988 Sep 2;241(4870):1228–1229. [PubMed]
  • Harlan JM. Leukocyte-endothelial interactions. Blood. 1985 Mar;65(3):513–525. [PubMed]
  • Hemler ME, Huang C, Schwarz L. The VLA protein family. Characterization of five distinct cell surface heterodimers each with a common 130,000 molecular weight beta subunit. J Biol Chem. 1987 Mar 5;262(7):3300–3309. [PubMed]
  • Hemler ME, Crouse C, Sonnenberg A. Association of the VLA alpha 6 subunit with a novel protein. A possible alternative to the common VLA beta 1 subunit on certain cell lines. J Biol Chem. 1989 Apr 15;264(11):6529–6535. [PubMed]
  • Hirst R, Horwitz A, Buck C, Rohrschneider L. Phosphorylation of the fibronectin receptor complex in cells transformed by oncogenes that encode tyrosine kinases. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6470–6474. [PubMed]
  • Hynes RO. Integrins: a family of cell surface receptors. Cell. 1987 Feb 27;48(4):549–554. [PubMed]
  • Ignatius MJ, Reichardt LF. Identification of a neuronal laminin receptor: an Mr 200K/120K integrin heterodimer that binds laminin in a divalent cation-dependent manner. Neuron. 1988 Oct;1(8):713–725. [PubMed]
  • Kikkawa U, Nishizuka Y. The role of protein kinase C in transmembrane signalling. Annu Rev Cell Biol. 1986;2:149–178. [PubMed]
  • Knudsen KA, Rao PE, Damsky CH, Buck CA. Membrane glycoproteins involved in cell--substratum adhesion. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6071–6075. [PubMed]
  • Lotz MM, Korzelius CA, Mercurio AM. Human colon carcinoma cells use multiple receptors to adhere to laminin: involvement of alpha 6 beta 4 and alpha 2 beta 1 integrins. Cell Regul. 1990 Feb;1(3):249–257. [PMC free article] [PubMed]
  • Marcantonio EE, Hynes RO. Antibodies to the conserved cytoplasmic domain of the integrin beta 1 subunit react with proteins in vertebrates, invertebrates, and fungi. J Cell Biol. 1988 May;106(5):1765–1772. [PMC free article] [PubMed]
  • Mercurio AM, Shaw LM. Macrophage interactions with laminin: PMA selectively induces the adherence and spreading of mouse macrophages on a laminin substratum. J Cell Biol. 1988 Nov;107(5):1873–1880. [PMC free article] [PubMed]
  • Mercurio AM, Schwarting GA, Robbins PW. Glycolipids of the mouse peritoneal macrophage. Alterations in amount and surface exposure of specific glycolipid species occur in response to inflammation and tumoricidal activation. J Exp Med. 1984 Oct 1;160(4):1114–1125. [PMC free article] [PubMed]
  • Mueller SC, Kelly T, Dai MZ, Dai HN, Chen WT. Dynamic cytoskeleton-integrin associations induced by cell binding to immobilized fibronectin. J Cell Biol. 1989 Dec;109(6 Pt 2):3455–3464. [PMC free article] [PubMed]
  • Ruoslahti E. Fibronectin and its receptors. Annu Rev Biochem. 1988;57:375–413. [PubMed]
  • Shaw LM, Mercurio AM. Interferon gamma and lipopolysaccharide promote macrophage adherence to basement membrane glycoproteins. J Exp Med. 1989 Jan 1;169(1):303–308. [PMC free article] [PubMed]
  • Sonnenberg A, Janssen H, Hogervorst F, Calafat J, Hilgers J. A complex of platelet glycoproteins Ic and IIa identified by a rat monoclonal antibody. J Biol Chem. 1987 Jul 25;262(21):10376–10383. [PubMed]
  • Sonnenberg A, Modderman PW, Hogervorst F. Laminin receptor on platelets is the integrin VLA-6. Nature. 1988 Dec 1;336(6198):487–489. [PubMed]
  • Tamkun JW, DeSimone DW, Fonda D, Patel RS, Buck C, Horwitz AF, Hynes RO. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell. 1986 Jul 18;46(2):271–282. [PubMed]
  • Tamaoki T, Nomoto H, Takahashi I, Kato Y, Morimoto M, Tomita F. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun. 1986 Mar 13;135(2):397–402. [PubMed]
  • Timpl R, Dziadek M. Structure, development, and molecular pathology of basement membranes. Int Rev Exp Pathol. 1986;29:1–112. [PubMed]
  • Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979 Oct 10;254(19):9933–9937. [PubMed]
  • Wayner EA, Carter WG. Identification of multiple cell adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique alpha and common beta subunits. J Cell Biol. 1987 Oct;105(4):1873–1884. [PMC free article] [PubMed]
  • Wayner EA, Carter WG, Piotrowicz RS, Kunicki TJ. The function of multiple extracellular matrix receptors in mediating cell adhesion to extracellular matrix: preparation of monoclonal antibodies to the fibronectin receptor that specifically inhibit cell adhesion to fibronectin and react with platelet glycoproteins Ic-IIa. J Cell Biol. 1988 Nov;107(5):1881–1891. [PMC free article] [PubMed]
  • Wewer UM, Taraboletti G, Sobel ME, Albrechtsen R, Liotta LA. Role of laminin receptor in tumor cell migration. Cancer Res. 1987 Nov 1;47(21):5691–5698. [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press