Search tips
Search criteria 


Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Cell Biol. 1987 December 1; 105(6): 2905–2914.
PMCID: PMC2114712

Translocation in yeast and mammalian cells: not all signal sequences are functionally equivalent


In Saccharomyces cerevisiae, nascent carboxypeptidase Y (CPY) is directed into the endoplasmic reticulum by an NH2-terminal signal peptide that is removed before the glycosylated protein is transported to the vacuole. In this paper, we show that this signal peptide does not function in mammalian cells: CPY expressed in COS-1 cells is not glycosylated, does not associate with membranes, and retains its signal peptide. In a mammalian cell-free protein-synthesizing system, CPY is not translocated into microsomes. However, if the CPY signal is either mutated to increase its hydrophobicity or replaced with that of influenza virus hemagglutinin, the resulting precursors are efficiently translocated both in vivo and in vitro. The implications of these results for models of signal sequence function are discussed.

Full Text

The Full Text of this article is available as a PDF (1.7M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Ainger KJ, Meyer DI. Translocation of nascent secretory proteins across membranes can occur late in translation. EMBO J. 1986 May;5(5):951–955. [PubMed]
  • Beck E, Ludwig G, Auerswald EA, Reiss B, Schaller H. Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene. 1982 Oct;19(3):327–336. [PubMed]
  • Bergh ML, Cepko CL, Wolf D, Robbins PW. Expression of the Saccharomyces cerevisiae glycoprotein invertase in mouse fibroblasts: glycosylation, secretion, and enzymatic activity. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3570–3574. [PubMed]
  • Blachly-Dyson E, Stevens TH. Yeast carboxypeptidase Y can be translocated and glycosylated without its amino-terminal signal sequence. J Cell Biol. 1987 May;104(5):1183–1191. [PMC free article] [PubMed]
  • Blobel G. Intracellular protein topogenesis. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1496–1500. [PubMed]
  • Bostian KA, Jayachandran S, Tipper DJ. A glycosylated protoxin in killer yeast: models for its structure and maturation. Cell. 1983 Jan;32(1):169–180. [PubMed]
  • Carlson M, Botstein D. Two differentially regulated mRNAs with different 5' ends encode secreted with intracellular forms of yeast invertase. Cell. 1982 Jan;28(1):145–154. [PubMed]
  • Carlson M, Taussig R, Kustu S, Botstein D. The secreted form of invertase in Saccharomyces cerevisiae is synthesized from mRNA encoding a signal sequence. Mol Cell Biol. 1983 Mar;3(3):439–447. [PMC free article] [PubMed]
  • Chao CC, Bird P, Gething MJ, Sambrook J. Posttranslational translocation of influenza virus hemagglutinin across microsomal membranes. Mol Cell Biol. 1987 Oct;7(10):3842–3845. [PMC free article] [PubMed]
  • Doyle C, Roth MG, Sambrook J, Gething MJ. Mutations in the cytoplasmic domain of the influenza virus hemagglutinin affect different stages of intracellular transport. J Cell Biol. 1985 Mar;100(3):704–714. [PMC free article] [PubMed]
  • Gething MJ, McCammon K, Sambrook J. Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell. 1986 Sep 12;46(6):939–950. [PubMed]
  • Gething MJ, Sambrook J. Cell-surface expression of influenza haemagglutinin from a cloned DNA copy of the RNA gene. Nature. 1981 Oct 22;293(5834):620–625. [PubMed]
  • Gething MJ, Sambrook J. Construction of influenza haemagglutinin genes that code for intracellular and secreted forms of the protein. Nature. 1982 Dec 16;300(5893):598–603. [PubMed]
  • Gluzman Y. SV40-transformed simian cells support the replication of early SV40 mutants. Cell. 1981 Jan;23(1):175–182. [PubMed]
  • Haas IG, Wabl M. Immunoglobulin heavy chain binding protein. Nature. 1983 Nov 24;306(5941):387–389. [PubMed]
  • Hansen W, Garcia PD, Walter P. In vitro protein translocation across the yeast endoplasmic reticulum: ATP-dependent posttranslational translocation of the prepro-alpha-factor. Cell. 1986 May 9;45(3):397–406. [PubMed]
  • Hasilik A, Tanner W. Carbohydrate moiety of carboxypeptidase Y and perturbation of its biosynthesis. Eur J Biochem. 1978 Nov 15;91(2):567–575. [PubMed]
  • Hitzeman RA, Leung DW, Perry LJ, Kohr WJ, Levine HL, Goeddel DV. Secretion of human interferons by yeast. Science. 1983 Feb 11;219(4585):620–625. [PubMed]
  • Abdul Jabbar M, Nayak DP. Signal processing, glycosylation, and secretion of mutant hemagglutinins of a human influenza virus by Saccharomyces cerevisiae. Mol Cell Biol. 1987 Apr;7(4):1476–1485. [PMC free article] [PubMed]
  • Johnson LM, Bankaitis VA, Emr SD. Distinct sequence determinants direct intracellular sorting and modification of a yeast vacuolar protease. Cell. 1987 Mar 13;48(5):875–885. [PubMed]
  • Julius D, Schekman R, Thorner J. Glycosylation and processing of prepro-alpha-factor through the yeast secretory pathway. Cell. 1984 Feb;36(2):309–318. [PubMed]
  • Kaiser CA, Preuss D, Grisafi P, Botstein D. Many random sequences functionally replace the secretion signal sequence of yeast invertase. Science. 1987 Jan 16;235(4786):312–317. [PubMed]
  • Lingappa VR, Chaidez J, Yost CS, Hedgpeth J. Determinants for protein localization: beta-lactamase signal sequence directs globin across microsomal membranes. Proc Natl Acad Sci U S A. 1984 Jan;81(2):456–460. [PubMed]
  • McCauley J, Bye J, Elder K, Gething MJ, Skehel JJ, Smith A, Waterfield MD. Influenza virus haemagglutinin signal sequence. FEBS Lett. 1979 Dec 15;108(2):422–426. [PubMed]
  • Meyer DI. Signal recognition particle (SRP) does not mediate a translational arrest of nascent secretory proteins in mammalian cell-free systems. EMBO J. 1985 Aug;4(8):2031–2033. [PubMed]
  • Mueckler M, Lodish HF. The human glucose transporter can insert posttranslationally into microsomes. Cell. 1986 Feb 28;44(4):629–637. [PubMed]
  • Müller M, Ibrahimi I, Chang CN, Walter P, Blobel G. A bacterial secretory protein requires signal recognition particle for translocation across mammalian endoplasmic reticulum. J Biol Chem. 1982 Oct 25;257(20):11860–11863. [PubMed]
  • Perara E, Rothman RE, Lingappa VR. Uncoupling translocation from translation: implications for transport of proteins across membranes. Science. 1986 Apr 18;232(4748):348–352. [PubMed]
  • Perlman D, Halvorson HO. Distinct repressible mRNAs for cytoplasmic and secreted yeast invertase are encoded by a single gene. Cell. 1981 Aug;25(2):525–536. [PubMed]
  • Perlman D, Halvorson HO. A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. J Mol Biol. 1983 Jun 25;167(2):391–409. [PubMed]
  • Rapoport TA. Protein translocation across and integration into membranes. CRC Crit Rev Biochem. 1986;20(1):73–137. [PubMed]
  • Rapoport TA, Heinrich R, Walter P, Schulmeister T. Mathematical modeling of the effects of the signal recognition particle on translation and translocation of proteins across the endoplasmic reticulum membrane. J Mol Biol. 1987 Jun 5;195(3):621–636. [PubMed]
  • Rothblatt JA, Meyer DI. Secretion in yeast: translocation and glycosylation of prepro-alpha-factor in vitro can occur via an ATP-dependent post-translational mechanism. EMBO J. 1986 May;5(5):1031–1036. [PubMed]
  • Sambrook J, Rodgers L, White J, Gething MJ. Lines of BPV-transformed murine cells that constitutively express influenza virus hemagglutinin. EMBO J. 1985 Jan;4(1):91–103. [PubMed]
  • Schekman R. Protein localization and membrane traffic in yeast. Annu Rev Cell Biol. 1985;1:115–143. [PubMed]
  • Sharma S, Rodgers L, Brandsma J, Gething MJ, Sambrook J. SV40 T antigen and the exocytotic pathway. EMBO J. 1985 Jun;4(6):1479–1489. [PubMed]
  • Shubeita HE, Sambrook JF, McCormick AM. Molecular cloning and analysis of functional cDNA and genomic clones encoding bovine cellular retinoic acid-binding protein. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5645–5649. [PubMed]
  • Stevens T, Esmon B, Schekman R. Early stages in the yeast secretory pathway are required for transport of carboxypeptidase Y to the vacuole. Cell. 1982 Sep;30(2):439–448. [PubMed]
  • Tabor S, Richardson CC. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. [PubMed]
  • Talmadge K, Stahl S, Gilbert W. Eukaryotic signal sequence transports insulin antigen in Escherichia coli. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3369–3373. [PubMed]
  • Tkacz JS, Lampen O. Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf-liver microsomes. Biochem Biophys Res Commun. 1975 Jul 8;65(1):248–257. [PubMed]
  • Valls LA, Hunter CP, Rothman JH, Stevens TH. Protein sorting in yeast: the localization determinant of yeast vacuolar carboxypeptidase Y resides in the propeptide. Cell. 1987 Mar 13;48(5):887–897. [PubMed]
  • Van Doren K, Hanahan D, Gluzman Y. Infection of eucaryotic cells by helper-independent recombinant adenoviruses: early region 1 is not obligatory for integration of viral DNA. J Virol. 1984 May;50(2):606–614. [PMC free article] [PubMed]
  • von Heijne G. On the hydrophobic nature of signal sequences. Eur J Biochem. 1981 May 15;116(2):419–422. [PubMed]
  • Walter P, Blobel G. Translocation of proteins across the endoplasmic reticulum III. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J Cell Biol. 1981 Nov;91(2 Pt 1):557–561. [PMC free article] [PubMed]
  • Walter P, Blobel G. Preparation of microsomal membranes for cotranslational protein translocation. Methods Enzymol. 1983;96:84–93. [PubMed]
  • Walter P, Gilmore R, Blobel G. Protein translocation across the endoplasmic reticulum. Cell. 1984 Aug;38(1):5–8. [PubMed]
  • Wiedmann M, Huth A, Rapoport TA. Xenopus oocytes can secrete bacterial beta-lactamase. Nature. 1984 Jun 14;309(5969):637–639. [PubMed]
  • Wills JW, Srinivas RV, Hunter E. Mutations of the Rous sarcoma virus env gene that affect the transport and subcellular location of the glycoprotein products. J Cell Biol. 1984 Dec;99(6):2011–2023. [PMC free article] [PubMed]
  • Zoller MJ, Smith M. Oligonucleotide-directed mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template. DNA. 1984 Dec;3(6):479–488. [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press