Search tips
Search criteria 


Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Cell Biol. 1985 March 1; 100(3): 807–813.
PMCID: PMC2113501

A smooth muscle-specific monoclonal antibody recognizes smooth muscle actin isozymes


Injection of chicken gizzard actin into BALB/c mice resulted in the isolation of a smooth muscle-specific monoclonal antibody designated CGA7. When assayed on methanol-Carnoy's fixed, paraffin-embedded tissue, it bound to smooth muscle cells and myoepithelial cells, but failed to decorate striated muscle, endothelium, connective tissue, epithelium, or nerve. CGA7 recognized microfilament bundles in early passage cultures of rat aortic smooth muscle cells and human leiomyosarcoma cells but did not react with human fibroblasts. In Western blot experiments, CGA7 detected actin from chicken gizzard and monkey ileum, but not skeletal muscle or fibroblast actin. Immunoblots performed on two-dimensional gels demonstrated that CGA7 recognizes gamma-actin from chicken gizzard and alpha- and gamma-actin from rat colon muscularis. This antibody was an excellent tissue-specific smooth muscle marker.

Full Text

The Full Text of this article is available as a PDF (1.9M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Lazarides E. Intermediate filaments as mechanical integrators of cellular space. Nature. 1980 Jan 17;283(5744):249–256. [PubMed]
  • Whalen RG, Butler-Browne GS, Gros F. Protein synthesis and actin heterogeneity in calf muscle cells in culture. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2018–2022. [PubMed]
  • Garrels JI, Gibson W. Identification and characterization of multiple forms of actin. Cell. 1976 Dec;9(4 Pt 2):793–805. [PubMed]
  • Rubenstein PA, Spudich JA. Actin microheterogeneity in chick embryo fibroblasts. Proc Natl Acad Sci U S A. 1977 Jan;74(1):120–123. [PubMed]
  • Storti RV, Horovitch SJ, Scott MP, Rich A, Pardue ML. Myogenesis in primary cell cultures from Drosophila melanogaster: protein synthesis and actin heterogeneity during development. Cell. 1978 Apr;13(4):589–598. [PubMed]
  • Collins JH, Elzinga M. The primary structure of actin from rabbit skeletal muscle. Completion and analysis of the amino acid sequence. J Biol Chem. 1975 Aug 10;250(15):5915–5920. [PubMed]
  • Vandekerckhove J, Weber K. Actin amino-acid sequences. Comparison of actins from calf thymus, bovine brain, and SV40-transformed mouse 3T3 cells with rabbit skeletal muscle actin. Eur J Biochem. 1978 Oct 16;90(3):451–462. [PubMed]
  • Vandekerckhove J, Weber K. The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle, and rabbit slow skeletal muscle. A protein-chemical analysis of muscle actin differentiation. Differentiation. 1979;14(3):123–133. [PubMed]
  • Vandekerckhove J, Weber K. The amino acid sequence of actin from chicken skeletal muscle actin and chicken gizzard smooth muscle actin. FEBS Lett. 1979 Jun 15;102(2):219–222. [PubMed]
  • Vandekerckhove J, Weber K. At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol. 1978 Dec 25;126(4):783–802. [PubMed]
  • Lubit BW, Schwartz JH. An antiactin antibody that distinguishes between cytoplasmic and skeletal muscle actins. J Cell Biol. 1980 Sep;86(3):891–897. [PMC free article] [PubMed]
  • Morgan JL, Holladay CR, Spooner BS. Immunological differences between actins from cardiac muscle, skeletal muscle, and brain. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2069–2073. [PubMed]
  • Bulinski JC, Kumar S, Titani K, Hauschka SD. Peptide antibody specific for the amino terminus of skeletal muscle alpha-actin. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1506–1510. [PubMed]
  • Pardo JV, Pittenger MF, Craig SW. Subcellular sorting of isoactins: selective association of gamma actin with skeletal muscle mitochondria. Cell. 1983 Apr;32(4):1093–1103. [PubMed]
  • Gown AM, Vogel AM. Monoclonal antibodies to intermediate filament proteins of human cells: unique and cross-reacting antibodies. J Cell Biol. 1982 Nov;95(2 Pt 1):414–424. [PMC free article] [PubMed]
  • Hubbard BD, Lazarides E. Copurification of actin and desmin from chicken smooth muscle and their copolymerization in vitro to intermediate filaments. J Cell Biol. 1979 Jan;80(1):166–182. [PMC free article] [PubMed]
  • Herman IM, Pollard TD. Comparison of purified anti-actin and fluorescent-heavy meromyosin staining patterns in dividing cells. J Cell Biol. 1979 Mar;80(3):509–520. [PMC free article] [PubMed]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed]
  • Chamley-Campbell JH, Campbell GR, Ross R. Phenotype-dependent response of cultured aortic smooth muscle to serum mitogens. J Cell Biol. 1981 May;89(2):379–383. [PMC free article] [PubMed]
  • O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed]
  • Vogel AM, Gown AM, Caughlan J, Haas JE, Beckwith JB. Rhabdoid tumors of the kidney contain mesenchymal specific and epithelial specific intermediate filament proteins. Lab Invest. 1984 Feb;50(2):232–238. [PubMed]
  • O'Farrell PZ, Goodman HM, O'Farrell PH. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. [PubMed]
  • Wray W, Boulikas T, Wray VP, Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. [PubMed]
  • Gown AM, Vogel AM. Monoclonal antibodies to human intermediate filament proteins. II. Distribution of filament proteins in normal human tissues. Am J Pathol. 1984 Feb;114(2):309–321. [PubMed]
  • Lazarides E, Weber K. Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2268–2272. [PubMed]
  • Vandekerckhove J, Weber K. Actin typing on total cellular extracts: a highly sensitive protein-chemical procedure able to distinguish different actins. Eur J Biochem. 1981 Jan;113(3):595–603. [PubMed]
  • Gabbiani G, Kapanci Y, Barazzone P, Franke WW. Immunochemical identification of intermediate-sized filaments in human neoplastic cells. A diagnostic aid for the surgical pathologist. Am J Pathol. 1981 Sep;104(3):206–216. [PubMed]
  • Osborn M, Weber K. Tumor diagnosis by intermediate filament typing: a novel tool for surgical pathology. Lab Invest. 1983 Apr;48(4):372–394. [PubMed]
  • Vogel AM, Gown AM. Monoclonal antibodies to intermediate filament proteins. Use in diagnostic surgical pathology. Cell Muscle Motil. 1984;5:379–403. [PubMed]
  • Benditt EP, Gown AM. Atheroma: the artery wall and the environment. Int Rev Exp Pathol. 1980;21:55–118. [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press