PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
 
J Cell Biol. 1984 February 1; 98(2): 619–628.
PMCID: PMC2113102

Generation of flagella by cultured mouse spermatids

Abstract

During the short-term culturing of mouse spermatogenic cells, flagella were generated by round spermatids previously lacking tails. Unseparated germ cells were obtained by enzymatic treatments and round spermatids (greater than 90% pure) were purified by unit gravity sedimentation. As determined by Nomarski or phase-contrast microscopy, no cells had flagella immediately after isolation; flagella were first clearly detected after 6 1/2 h of culture in Eagle's minimal essential medium containing 10% fetal bovine serum and 6 mM lactate. After 24 h, approximately 20% of round spermatids had formed flagella. Multinucleated round spermatids often formed multiple flagella, the number never exceeding the number of nuclei per symplast. Round spermatids were the only spermatogenic cells capable of tail formation. Flagella elongation was blocked by 1 microM demecolcine, an inhibitor of tubulin polymerization. Indirect immunofluorescence localized tubulin in the flagella. As seen by scanning electron microscopy, flagella developed as early as 2 h after culture and continued to elongate over the next 20 h, reaching lengths of at least 19 micron. Transmission electron microscopy demonstrated that flagella formed in culture resembled flagella from Golgi-phase round spermatids in situ; the flagella consisted of "9+2" axonemes lacking other accessory structures such as outer dense fibers and the fibrous sheath. As determined by acridine orange staining of the developing acrosomes, all spermatids that formed flagella in culture were Golgi-phase spermatids. By these criteria, the structures are indeed true flagella, corresponding in appearance to what others have described for early mammalian spermatid flagella in situ. We believe this is the first substantiated report of limited in vitro differentiation by isolated mammalian spermatids.

Full Text

The Full Text of this article is available as a PDF (1.3M).

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press