Search tips
Search criteria 


Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
J Cell Biol. 1984 January 1; 98(1): 44–53.
PMCID: PMC2113014

Genes required for completion of import of proteins into the endoplasmic reticulum in yeast


Yeast secretory mutants sec53 and sec59 define a posttranslational stage in the penetration of glycoprotein precursors into the endoplasmic reticulum (ER). In the previous report we showed that at the restrictive temperature (37 degrees C) these mutants accumulate enzymatically inactive and incompletely glycosylated forms of the secretory enzyme invertase and the vacuolar enzyme carboxypeptidase Y. Cell fractionation experiments reveal that these precursor forms remain firmly bound to the ER membrane. However, upon return to the permissive temperature (24 degrees C), the invertase precursors are glycosylated, become partially active, and are secreted. Thermoreversible conversion does not require protein synthesis, but does require energy. In contrast to the effect of these mutations, inhibition of oligosaccharide synthesis with tunicamycin at 37 degrees C causes irreversible accumulation of unglycosylated invertase. The effect of the drug is exaggerated by high temperature since unglycosylated invertase synthesized in the presence of tunicamycin at 25 degrees C is secreted. A portion of the invertase polypeptide accumulated at 37 degrees C is preserved when membranes from sec53 and sec59 are treated with trypsin. In the presence of Triton X-100 or saponin, the invertase is degraded completely. The protected fragment appears to represent a portion of the invertase polypeptide that is embedded in or firmly associated with the ER membrane. This association may develop early during the synthesis of invertase, so that in the absence of translocation, some of the completed polypeptide chain remains exposed on the cytoplasmic surface of the ER.

Full Text

The Full Text of this article is available as a PDF (1.6M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Ferro-Novick S, Novick P, Field C, Schekman R. Yeast secretory mutants that block the formation of active cell surface enzymes. J Cell Biol. 1984 Jan;98(1):35–43. [PMC free article] [PubMed]
  • Walter P, Blobel G. Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein (SRP) mediates the selective binding to microsomal membranes of in-vitro-assembled polysomes synthesizing secretory protein. J Cell Biol. 1981 Nov;91(2 Pt 1):551–556. [PMC free article] [PubMed]
  • Walter P, Blobel G. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature. 1982 Oct 21;299(5885):691–698. [PubMed]
  • Meyer DI, Krause E, Dobberstein B. Secretory protein translocation across membranes-the role of the "docking protein'. Nature. 1982 Jun 24;297(5868):647–650. [PubMed]
  • Gilmore R, Walter P, Blobel G. Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor. J Cell Biol. 1982 Nov;95(2 Pt 1):470–477. [PMC free article] [PubMed]
  • Jones EW. Proteinase mutants of Saccharomyces cerevisiae. Genetics. 1977 Jan;85(1):23–33. [PubMed]
  • Raschke WC, Kern KA, Antalis C, Ballou CE. Genetic control of yeast mannan structure. Isolation and characterization of mannan mutants. J Biol Chem. 1973 Jul 10;248(13):4660–4666. [PubMed]
  • Goldstein A, Lampen JO. Beta-D-fructofuranoside fructohydrolase from yeast. Methods Enzymol. 1975;42:504–511. [PubMed]
  • Fraker PJ, Speck JC., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. [PubMed]
  • Novick P, Schekman R. Export of major cell surface proteins is blocked in yeast secretory mutants. J Cell Biol. 1983 Feb;96(2):541–547. [PMC free article] [PubMed]
  • Stevens T, Esmon B, Schekman R. Early stages in the yeast secretory pathway are required for transport of carboxypeptidase Y to the vacuole. Cell. 1982 Sep;30(2):439–448. [PubMed]
  • Opheim DJ. alpha-D-Mannosidase of Saccharomyces cerevisiae. Characterization and modulation of activity. Biochim Biophys Acta. 1978 May 11;524(1):121–130. [PubMed]
  • Serrano R. Characterization of the plasma membrane ATPase of Saccharomyces cerevisiae. Mol Cell Biochem. 1978 Nov 30;22(1):51–63. [PubMed]
  • Kubota S, Yoshida Y, Kumaoka H, Furumichi A. Studies on the microsomal electron-transport system of anaerobically grown yeast. V. Purification and characterization of NADPH-cytochrome c reductase. J Biochem. 1977 Jan;81(1):197–205. [PubMed]
  • Gascón S, Lampen JO. Purification of the internal invertase of yeast. J Biol Chem. 1968 Apr 10;243(7):1567–1572. [PubMed]
  • Lehle L, Cohen RE, Ballou CE. Carbohydrate structure of yeast invertase. Demonstration of a form with only core oligosaccharides and a form with completed polysaccharide chains. J Biol Chem. 1979 Dec 10;254(23):12209–12218. [PubMed]
  • Esmon B, Novick P, Schekman R. Compartmentalized assembly of oligosaccharides on exported glycoproteins in yeast. Cell. 1981 Aug;25(2):451–460. [PubMed]
  • Gibson R, Schlesinger S, Kornfeld S. The nonglycosylated glycoprotein of vesicular stomatitis virus is temperature-sensitive and undergoes intracellular aggregation at elevated temperatures. J Biol Chem. 1979 May 10;254(9):3600–3607. [PubMed]
  • Novick P, Ferro S, Schekman R. Order of events in the yeast secretory pathway. Cell. 1981 Aug;25(2):461–469. [PubMed]
  • Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell. 1980 Aug;21(1):205–215. [PubMed]
  • Babczinski P. Partial purification, characterization and localization of the membrane-associated invertase of yeast. Biochim Biophys Acta. 1980 Jul 10;614(1):121–133. [PubMed]
  • Walter P, Blobel G. Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7112–7116. [PubMed]
  • Oliver DB, Beckwith J. E. coli mutant pleiotropically defective in the export of secreted proteins. Cell. 1981 Sep;25(3):765–772. [PubMed]
  • Kumamoto CA, Beckwith J. Mutations in a new gene, secB, cause defective protein localization in Escherichia coli. J Bacteriol. 1983 Apr;154(1):253–260. [PMC free article] [PubMed]
  • Date T, Zwizinski C, Ludmerer S, Wickner W. Mechanisms of membrane assembly: effects of energy poisons on the conversion of soluble M13 coliphage procoat to membrane-bound coat protein. Proc Natl Acad Sci U S A. 1980 Feb;77(2):827–831. [PubMed]
  • Enequist HG, Hirst TR, Harayama S, Hardy SJ, Randall LL. Energy is required for maturation of exported proteins in Escherichia coli. Eur J Biochem. 1981 May 15;116(2):227–233. [PubMed]
  • Daniels CJ, Bole DG, Quay SC, Oxender DL. Role for membrane potential in the secretion of protein into the periplasm of Escherichia coli. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5396–5400. [PubMed]
  • Nelson N, Schatz G. Energy-dependent processing of cytoplasmically made precursors to mitochondrial proteins. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4365–4369. [PubMed]
  • Teintze M, Slaughter M, Weiss H, Neupert W. Biogenesis of mitochondrial ubiquinol:cytochrome c reductase (cytochrome bc1 complex). Precursor proteins and their transfer into mitochondria. J Biol Chem. 1982 Sep 10;257(17):10364–10371. [PubMed]
  • Gasser SM, Daum G, Schatz G. Import of proteins into mitochondria. Energy-dependent uptake of precursors by isolated mitochondria. J Biol Chem. 1982 Nov 10;257(21):13034–13041. [PubMed]
  • Taussig R, Carlson M. Nucleotide sequence of the yeast SUC2 gene for invertase. Nucleic Acids Res. 1983 Mar 25;11(6):1943–1954. [PMC free article] [PubMed]
  • Hickman S, Kulczycki A, Jr, Lynch RG, Kornfeld S. Studies of the mechanism of tunicamycin in hibition of IgA and IgE secretion by plasma cells. J Biol Chem. 1977 Jun 25;252(12):4402–4408. [PubMed]
  • Struck DK, Siuta PB, Lane MD, Lennarz WJ. Effect of tunicamycin on the secretion of serum proteins by primary cultures of rat and chick hepatocytes. Studies on transferrin, very low density lipoprotein, and serum albumin. J Biol Chem. 1978 Aug 10;253(15):5332–5337. [PubMed]
  • Zimmermann R, Wickner W. Energetics and intermediates of the assembly of Protein OmpA into the outer membrane of Escherichia coli. J Biol Chem. 1983 Mar 25;258(6):3920–3925. [PubMed]
  • Carlson M, Botstein D. Two differentially regulated mRNAs with different 5' ends encode secreted with intracellular forms of yeast invertase. Cell. 1982 Jan;28(1):145–154. [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press