PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
 
J Cell Biol. 1983 September 1; 97(3): 902–908.
PMCID: PMC2112583

Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella

Abstract

Analysis of serial cross-sections of the Chlamydomonas flagellum reveals several structural asymmetries in the axoneme. One doublet lacks the outer dynein arm, has a beak-like projection in its B-tubule, and bears a two-part bridge that extends from the A-tubule of this doublet to the B-tubule of the adjacent doublet. The two doublets directly opposite the doublet lacking the arm have beak-like projections in their B-tubules. These asymmetries always occur in the same doublets from section to section, indicating that certain doublets have consistent morphological specializations. These unique doublets give the axoneme an inherent structural polarity. All three specializations are present in the proximal portion of the axoneme; based on their frequency in random cross-sections of isolated axonemes, the two-part bridge and the beak-like projections are present in the proximal one quarter and one half of the axoneme, respectively, and the outer arm is absent from the one doublet greater than 90% of the axoneme's length. The outer arm-less doublet of each flagellum faces the other flagellum, indicating that each axoneme has the same rotational orientation relative to the direction of its effective stroke. This strongly suggests that the direction of the effective stroke is controlled by a structural component within the axoneme. The striated fibers are associated with specific triplets in a manner suggesting that they play a role in setting up or maintaining the 180 degrees rotational symmetry of the two flagella.

Full Text

The Full Text of this article is available as a PDF (2.7M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • AFZELIUS B. Electron microscopy of the sperm tail; results obtained with a new fixative. J Biophys Biochem Cytol. 1959 Mar 25;5(2):269–278. [PMC free article] [PubMed]
  • Bessen M, Fay RB, Witman GB. Calcium control of waveform in isolated flagellar axonemes of Chlamydomonas. J Cell Biol. 1980 Aug;86(2):446–455. [PMC free article] [PubMed]
  • Brokaw CJ, Luck DJ, Huang B. Analysis of the movement of Chlamydomonas flagella:" the function of the radial-spoke system is revealed by comparison of wild-type and mutant flagella. J Cell Biol. 1982 Mar;92(3):722–732. [PMC free article] [PubMed]
  • Dentler WL, Rosenbaum JL. Flagellar elongation and shortening in Chlamydomonas. III. structures attached to the tips of flagellar microtubules and their relationship to the directionality of flagellar microtubule assembly. J Cell Biol. 1977 Sep;74(3):747–759. [PMC free article] [PubMed]
  • Foster KW, Smyth RD. Light Antennas in phototactic algae. Microbiol Rev. 1980 Dec;44(4):572–630. [PMC free article] [PubMed]
  • GIBBONS IR. The relationship between the fine structure and direction of beat in gill cilia of a lamellibranch mollusc. J Biophys Biochem Cytol. 1961 Oct;11:179–205. [PMC free article] [PubMed]
  • Gitelman SE, Witman GB. Purification of calmodulin from Chlamydomonas: calmodulin occurs in cell bodies and flagella. J Cell Biol. 1980 Dec;87(3 Pt 1):764–770. [PMC free article] [PubMed]
  • Goodenough UW, Heuser JE. Substructure of the outer dynein arm. J Cell Biol. 1982 Dec;95(3):798–815. [PMC free article] [PubMed]
  • Hopkins JM. Subsidiary components of the flagella of Chlamydomonas reinhardii. J Cell Sci. 1970 Nov;7(3):823–839. [PubMed]
  • Huang B, Piperno G, Luck DJ. Paralyzed flagella mutants of Chlamydomonas reinhardtii. Defective for axonemal doublet microtubule arms. J Biol Chem. 1979 Apr 25;254(8):3091–3099. [PubMed]
  • Hyams JS, Borisy GG. Flagellar coordination in Chlamydomonas reinhardtii: isolation and reactivation of the flagellar apparatus. Science. 1975 Sep 12;189(4206):891–893. [PubMed]
  • Hyams JS, Borisy GG. Isolated flagellar apparatus of Chlamydomonas: characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro. J Cell Sci. 1978 Oct;33:235–253. [PubMed]
  • Jarosch R, Fuchs B. Zur Fibrillenrotation in der Synura-Geissel. Protoplasma. 1975;85(2-4):285–290. [PubMed]
  • Kamiya R. Extrusion and Rotation of the central-pair microtubules in detergent-treated Chlamydomonas flagella. Prog Clin Biol Res. 1982;80:169–173. [PubMed]
  • L'Hernault SW, Rosenbaum JL. Chlamydomonas alpha-tubulin is posttranslationally modified in the flagella during flagellar assembly. J Cell Biol. 1983 Jul;97(1):258–263. [PMC free article] [PubMed]
  • Mattei C, Mattei X, Marchand B. Réinvestigation de la structure des flagelles spermatiques: les doublets 1, 2, 5 et 6. J Ultrastruct Res. 1979 Dec;69(3):371–377. [PubMed]
  • Melkonian M. The functional analysis of the flagellar apparatus in green algae. Symp Soc Exp Biol. 1982;35:589–606. [PubMed]
  • Omoto CK, Kung C. The pair of central tubules rotates during ciliary beat in Paramecium. Nature. 1979 Jun 7;279(5713):532–534. [PubMed]
  • Omoto CK, Kung C. Rotation and twist of the central-pair microtubules in the cilia of Paramecium. J Cell Biol. 1980 Oct;87(1):33–46. [PMC free article] [PubMed]
  • Omoto CK, Witman GB. Functionally significant central-pair rotation in a primitive eukaryotic flagellum. Nature. 1981 Apr 23;290(5808):708–710. [PubMed]
  • Pfister KK, Fay RB, Witman GB. Purification and polypeptide composition of dynein ATPases from Chlamydomonas flagella. Cell Motil. 1982;2(6):525–547. [PubMed]
  • Piperno G, Huang B, Luck DJ. Two-dimensional analysis of flagellar proteins from wild-type and paralyzed mutants of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1600–1604. [PubMed]
  • Racey TJ, Hallett R, Nickel B. A quasi-elastic light scattering and cinematographic investigation of motile Chlamydomonas reinhardtii. Biophys J. 1981 Sep;35(3):557–571. [PubMed]
  • Remillard SP, Witman GB. Synthesis, transport, and utilization of specific flagellar proteins during flagellar regeneration in Chlamydomonas. J Cell Biol. 1982 Jun;93(3):615–631. [PMC free article] [PubMed]
  • Ringo DL. Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol. 1967 Jun;33(3):543–571. [PMC free article] [PubMed]
  • Schmidt JA, Eckert R. Calcium couples flagellar reversal to photostimulation in Chlamydomonas reinhardtii. Nature. 1976 Aug 19;262(5570):713–715. [PubMed]
  • Tamm SL, Tamm S. Ciliary reversal without rotation of axonemal structures in ctenophore comb plates. J Cell Biol. 1981 Jun;89(3):495–509. [PMC free article] [PubMed]
  • Witman GB, Carlson K, Berliner J, Rosenbaum JL. Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes. J Cell Biol. 1972 Sep;54(3):507–539. [PMC free article] [PubMed]
  • Witman GB, Minervini N. Dynein arm conformation and mechanochemical transduction in the eukaryotic flagellum. Symp Soc Exp Biol. 1982;35:203–223. [PubMed]
  • Witman GB, Plummer J, Sander G. Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components. J Cell Biol. 1978 Mar;76(3):729–747. [PMC free article] [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press