PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jcellbiolHomeThe Rockefeller University PressEditorsContactInstructions for AuthorsThis issue
 
J Cell Biol. 1978 December 1; 79(3): 827–832.
PMCID: PMC2110271

Effects of adenylyl imidodiphosphate, a nonhydrolyzable adenosine triphosphate analog, on reactivated and rigor wave sea urchin sperm

Abstract

A nonhydrolyzable ATP analog, adenylyl imidodiphosphate (AMP-PNP), has been used to study the role of ATP binding in flagellar motility. Sea urchin sperm of Lytechinus pictus were demembranated, reactivated, and locked in "rigor waves" by a modification of the method of Gibbons and Gibbons (11). Rigor wave sperm relaxed within 2 min after addition of 4 micrometer ATP, and reactivated upon addition of 10-12 micrometer ATP. The beat frequency of the reactivated sperm varied with ATP concentration according to Michaelis-Menten kinetics ("Km" = 0.24 mM; "Vmax" = 44 Hz) and was competitively inhibited by AMP-PNP (Ki" approximately to 8.1 mM). Rigor wave sperm were completely relaxed (straightened) within 2 min by AMP-PNP at concentrations of 2-4 mM. The possibilities that relaxation in AMP-PNP was a result of ATP contamination, AMP-PNP hydrolysis, or lowering of the free Mg++ concentration were conclusively ruled out. The results suggest that dynein cross-bridge release is dependent upon ATP binding but not hydrolysis.

Full Text

The Full Text of this article is available as a PDF (776K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • AFZELIUS B. Electron microscopy of the sperm tail; results obtained with a new fixative. J Biophys Biochem Cytol. 1959 Mar 25;5(2):269–278. [PMC free article] [PubMed]
  • Brokaw CJ. Effects of viscosity and ATP concentration on the movement of reactivated sea-urchin sperm flagella. J Exp Biol. 1975 Jun;62(3):701–719. [PubMed]
  • Brokaw CJ, Rintala D. Computer simulation of flagellar movement. V. oscillation of cross-bridge models with an ATP-concentration-dependent rate function. J Mechanochem Cell Motil. 1977 Sep;4(3):205–232. [PubMed]
  • Cooke R. The role of the bound nucleotide in the polymerization of actin. Biochemistry. 1975 Jul 15;14(14):3250–3256. [PubMed]
  • Gibbons BH, Ogawa K, Gibbons IR. The effect of antidynein 1 serum on the movement of reactivated sea urchin sperm. J Cell Biol. 1976 Dec;71(3):823–831. [PMC free article] [PubMed]
  • Gibbons IR, Rowe AJ. Dynein: A Protein with Adenosine Triphosphatase Activity from Cilia. Science. 1965 Jul 23;149(3682):424–426. [PubMed]
  • LOWRY OH, ROSEBROUGH NJ, FARR AL, RANDALL RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed]
  • Ogawa K, Mohri H. Studies on flagellar ATPase from sea urchin spermatozoa. I. Purification and some properties of the enzyme. Biochim Biophys Acta. 1972 Jan 21;256(1):142–155. [PubMed]
  • Witman GB, Plummer J, Sander G. Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components. J Cell Biol. 1978 Mar;76(3):729–747. [PMC free article] [PubMed]
  • Yount RG, Babcock D, Ballantyne W, Ojala D. Adenylyl imidodiphosphate, an adenosine triphosphate analog containing a P--N--P linkage. Biochemistry. 1971 Jun 22;10(13):2484–2489. [PubMed]
  • Yount RG, Ojala D, Babcock D. Interaction of P--N--P and P--C--P analogs of adenosine triphosphate with heavy meromyosin, myosin, and actomyosin. Biochemistry. 1971 Jun 22;10(13):2490–2496. [PubMed]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press