PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
 
J Bacteriol. Dec 1990; 172(12): 6704–6712.
PMCID: PMC210783
Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli.
N Misawa, M Nakagawa, K Kobayashi, S Yamano, Y Izawa, K Nakamura, and K Harashima
Central Laboratories for Key Technology, Kirin Brewery Co., Ltd., Gunma, Japan.
Abstract
The most important function of carotenoid pigments, especially beta-carotene in higher plants, is to protect organisms against photooxidative damage (G. Britton, in T. W. Goodwin, ed., Plant Pigments--1988, 1988; N. I. Krinsky, in O. Isler, H. Gutmann, and U. Solms, ed., Carotenoids--1971, 1971). beta-Carotene also functions as a precursor of vitamin A in mammals (G. A. J. Pitt, in I. Osler, H. Gutmann, and U. Solms, ed., Carotenoids--1971, 1971). The enzymes and genes which mediate the biosynthesis of cyclic carotenoids such as beta-carotene are virtually unknown. We have elucidated for the first time the pathway for biosynthesis of these carotenoids at the level of enzyme-catalyzed reactions, using bacterial carotenoid biosynthesis genes. These genes were cloned from a phytopathogenic bacterium, Erwinia uredovora 20D3 (ATCC 19321), in Escherichia coli and located on a 6,918-bp fragment whose nucleotide sequence was determined. Six open reading frames were found and designated the crtE, crtX, crtY, crtI, crtB, and crtZ genes in reference to the carotenoid biosynthesis genes of a photosynthetic bacterium, Rhodobacter capsulatus; only crtZ had the opposite orientation from the others. The carotenoid biosynthetic pathway in Erwinia uredovora was clarified by analyzing carotenoids accumulated in E. coli transformants in which some of these six genes were expressed, as follows: geranylgeranyl PPiCrtB----prephytoene PPiCrtE----phytoeneCrtI---- lycopeneCrtY----beta-caroteneCrtZ----zeaxanthinCrtX--- -zeaxanthin-beta- diglucoside. The carotenoids in this pathway appear to be close to those in higher plants rather than to those in bacteria. Also significant is that only one gene product (CrtI) for the conversion of phytoene to lycopene is required, a conversion in which four sequential desaturations should occur via the intermediates phytofluene, zeta-carotene, and neurosporene.
Full text
Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.9M), or click on a page image below to browse page by page.
Images in this article
Click on the image to see a larger version.
Articles from Journal of Bacteriology are provided here courtesy of
American Society for Microbiology (ASM)