Search tips
Search criteria 


Logo of jbacterPermissionsJournals.ASM.orgJournalJB ArticleJournal InfoAuthorsReviewers
J Bacteriol. 1991 September; 173(18): 5793–5799.
PMCID: PMC208312

High-frequency mobilization of broad-host-range plasmids into Neisseria gonorrhoeae requires methylation in the donor.


Antibiotic resistance in Neisseria gonorrhoeae has been associated with the acquisition of R plasmids from heterologous organisms. The broad-host-range plasmids of incompatibility groups P (IncP) and Q (IncQ) have played a role in this genetic exchange in nature. We have utilized derivatives of RSF1010 (IncQ) and RP1 (IncP) to demonstrate that the plethora of restriction barriers associated with the gonococci markedly reduces mobilization of plasmids from Escherichia coli into strains F62 and PGH 3-2. Partially purified restriction endonucleases from these gonococcal strains can digest RSF1010 in vitro. Protection of RSF1010-km from digestion by gonococcal enzymes purified from strain F62 is observed when the plasmid is isolated from E. coli containing a coresident plasmid, pCAL7. Plasmid pCAL7 produces a 5'-MECG-3' cytosine methylase (M.SssI). The M.SssI methylase only partially protects RSF1010-km from digestion by restriction enzymes from strain PGH 3-2. Total protection of RSF1010-km from PGH 3-2 restriction requires both pCAL7 and a second coresident plasmid, pFnuDI, which produces a 5'-GGMECC-3' cytosine methylase. When both F62 and PGH 3-2 are utilized as recipients in heterospecific matings with E. coli, mobilization of RSF1010 from strains containing the appropriate methylases into the gonococci occurs at frequencies 4 orders of magnitude higher than from strains without the methylases. Thus, protection of RSF1010 from gonococcal restriction enzymes in vitro correlates with an increase in the conjugal frequency. These data indicate that restriction is a major barrier against efficient conjugal transfer between N. gonorrhoeae and heterologous hosts.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.6M), or click on a page image below to browse page by page.

Images in this article

Click on the image to see a larger version.

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)